资讯

承天示优,优品至上。

傅里叶红外光谱FTIR(傅里叶红外光谱制样)

承天示优官方账号 2023-03-04 资讯 601 views 0

今天的文章给大伙介绍下傅里叶红外光谱FTIR,和傅里叶红外光谱制样相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

ftir红外光谱仪原理

由红外光源S发出的红外光经准直为平行红外光束进入干涉系统,经干涉仪调整制后得到一束干涉光。干涉光通过样品Sa,获得含有光谱信息的干涉信号到达探测器D上,由D将干涉信号变为电信号。此处的干涉信号是一时间函数,即由干涉信号绘出的干涉图,其横坐标是动镜移动时间或动镜移动距离。这种干涉图经过A/D转换器送入计算机,由计算机进行傅立叶变换的快速计算,即可获得以波数为横坐标的红外光谱图。然后通过D/A转换器送入绘图仪而绘出人们十分熟悉的标准红外吸收光谱图。

傅立叶变换红外吸收光谱仪(FTIR)是红外光谱仪器的第三代。 1.光源傅立叶变换红外光谱仪要求光源能发射出稳定、能量强、发射度小的具有连续波长的红外光。傅立叶变换红外光谱仪红外工作软件,傅立叶变换红外光谱仪红外谱图的记录、处理一般都是在计算机上进行的。

傅立叶红外光谱仪FTIR的具体原理?

傅立叶变换红外光谱仪的核心部件是干涉仪,干涉仪的主要功能是使光源发出的红外光分为两束,一束被定镜反射,一束被动镜反射,动镜的移动使得反射回来的两束光产生了一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率和强度信息。用计算机将干涉图函数进行傅里叶变换,就可以得到以波长或波数为函数的频域图,即红外光谱图。

ftir主要是分析什么

ftir主要是分析光谱。

FTIR主要由迈克尔逊干涉仪和计算机两部分组成。由红外光源S发出的红外光经准直为平行红外光束进入干涉系统,经干涉仪调整制后得到一束干涉光。

干涉光通过样品Sa,获得含有光谱信息的干涉信号到达探测器D上,由D将干涉信号变为电信号。此处的干涉信号是一时间函数,即由干涉信号绘出的干涉图,其横坐标是动镜移动时间或动镜移动距离。

这种干涉图经过A/D转换器送入计算机,由计算机进行傅立叶变换的快速计算,即可获得以波数为横坐标的红外光谱图。然后通过D/A转换器送入绘图仪而绘出人们十分熟悉的标准红外吸收光谱图。

扩展资料

红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。

当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。

含n个原子的分子应有3n-6个简正振动方式;如果是线性分子,只有3n-5个简正振动方式。以非线性三原子分子为例,它的简正振动方式只有三种。

在v1和v3振动中,只是化学键的伸长和缩短,称为伸缩振动,而v2的振动方式改变了分子中化学键间的夹角称为变角振动,它们是分子振动的主要方式。

分子振动的能量与红外射线的光量子能量正好对应,因此,当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子的振动,而产生红外吸收光谱。

傅里叶变换红外光谱仪:

它是非色散型的,核心部分是一台双光束干涉仪(图4中虚线框内所示),常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱B(v):

式中I(x)为干涉信号;v为波数;x为两束光的光程差。

傅里叶变换光谱仪的主要优点是:

①多通道测量使信噪比提高;

②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;

③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米;

④增加动镜移动距离就可使分辨本领提高;

⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。

参考资料:百度百科-FTIR(傅立叶变换红外吸收光谱仪)

参考资料:百度百科-红外光谱

傅里叶红外光谱测反射N-H在什么峰位

出峰位置在750。

傅里叶红外光谱(FTIR).pdf,红外光谱的原理及应用(一)红外吸收光谱的定义及产生分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃动。

关于傅里叶红外光谱FTIR和傅里叶红外光谱制样的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624