资讯

承天示优,优品至上。

傅立叶红外气体分析仪实验报告(傅立叶红外测试方法)

承天示优官方账号 2022-11-21 资讯 1189 views 0

今天给朋友们分享一下有关傅立叶红外气体分析仪实验报告的知识,其中当然也会对傅立叶红外测试方法进行一部分的介绍,加入能碰巧解决你现在遇到的困难,不要忘了关注本站,那我们现在开始吧!

本文目录一览:

傅里叶红外光谱仪的用处

一、酒制品检测分析

不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,为葡萄酒原产地真伪识别提供了一种高效低成本的新方法。

此外,利用红外光谱对白酒年份与香型鉴别也有十分效。因不同香型白酒的成分有所差异,其红外光谱也不尽相同,可根据红外光谱差异鉴别不同年份的白酒。

二、蜂蜜检测分析

我国蜂蜜质量参差不齐,掺假现象也较为严重。孙燕等利用中红外图谱分析仪结合化学计量软件建立饶河黑蜂蜂蜜产地真假判别模型判别饶河本地的蜂蜜样品和其它地区蜂蜜样品,准确率达90.3 %,为蜂蜜真伪鉴别提供了一种有效的方法。

三、谷类检测分析

近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。

将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300 cm-1伸缩振动吸收,证明该试样中含有直链烷烃的矿物油。文中指出该方法可用于对大米、饼干、瓜子和食用油中是否掺加工业矿物油的鉴定。粮食在高温高湿条件下极易发霉变质,不仅造成经济损失还严重威胁人畜健康。

刘凌平等利用傅里叶变换衰减全反射红外光谱技术结合化学计量学方法(ART-FTIR),对稻谷中7 种常见有害霉菌进行了快速鉴定,建立的线性判别分析和偏最小二乘判别分析模型对7种不同类别菌株的留一交互验证整体正确率分别达到 87.1 %和87.3 %,表明ART-FTIR 技术技术可用于谷物中霉菌不同属间的快速鉴别,尤其对不同菌属的霉菌具有良好的判别效果。

四、果蔬检测分析

果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。朱春艳用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析。

验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),相关系数为0.9141,辛硫磷的最低检测限为0.02×10-6,相关系数为0.9036,为果蔬农药残留检测提供了一种方便、快捷、准确的方法。

扩展资料:

傅里叶变换红外光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成。

(1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨 灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。

(2)分束器:分束器是迈克尔逊干涉仪的关键元件。其作用是将入射光束分成反射和透射两部分,然后 再使之复合,如果可动镜使两束光造成一定的光程差,则复合光束即可造成相长或相消干涉。

对分束器的要求是:应在波数v处使入射光束透射和反射各半,此时被调制的光束振幅最大。根据使用 波段范围不同,在不同介质材料上加相应的表面涂层,即构成分束器。

(3)探测器:傅里叶变换红外光谱仪所用的探测器与色散型红外分光光度计所用的探测器无本质的区 别。常用的探测器有硫酸三甘钛(TGS)、铌酸钡锶、碲镉汞、锑化铟等。

(4)数据处理系统:傅里叶变换红外光谱仪数据处理系统的核心是计算机,功能是控制仪器的操作,收集 数据和处理数据。

参考资料:百度百科——傅里叶红外光谱仪

说明傅里叶红外光谱仪与色散型红外光谱仪的区别

红外光谱[1](infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。

量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。

研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。

红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。

红外识谱歌

红外可分远中近,中红特征指纹区,

1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;

单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。

1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;

四氢只有750,二氢相邻830;

间二取代出三峰,700、780,880处孤立氢

醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔醇位不同。

1050伯醇显,1100乃是仲,

1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,

1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,

环氧乙烷有三峰,1260环振动,

九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,

开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,

920,钝峰显,羧基可定二聚酸、

酸酐千八来偶合,双峰60严相隔,

链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,

1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,

1220乙酸酯,1250芳香酸。

1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;

N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;

碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,

叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,

仲胺盐、叔胺盐,2700上下可分辨,

亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

钝盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐。

1100是硫酸根,1380硝酸盐,

1450碳酸根,一千左右看磷酸。

硅酸盐,一峰宽,1000真壮观。

勤学苦练多实践,红外识谱不算难。

红外光谱发展史

雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。

从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。

1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。

红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。

现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。

红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

红外光谱仪中文版使用说明书,疑难问题解答。如定期维护?

一. 红外光谱基本原理

红外光谱(Infrared Spectrometry,IR)又称为振动转动光谱,是一种分子吸收光谱。

当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动)时伴

有偶极矩改变者就吸收红外光子,形成红外吸收光谱。用红外光谱法可进行物质的定性和定

量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。

傅里叶变换红外光谱仪(简称 FTIR)和其它类型红外光谱仪一样,都是用来获得物质的

红外吸收光谱,但测定原理有所不同。在色散型红外光谱仪中,光源发出的光先照射试样,

而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。但在傅里叶变

换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样

品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。

红外光谱根据不同的波数范围分为近红外区(13330—4000 cm

-1

)、中红外区(4000-650

cm

-1

)和远红外区(650-10 cm

-1

)。VECTOR22 VECTOR22 FTIR光谱仪提供中红外区的分测

试。

二. 试样的制备

1. 对试样的要求

(1)试样应是单一组分的纯物质

(2)试样中不应含有游离水

(3)试样的浓度或测试厚度应合适

2.制样方法

(1)气态试样

使用气体池,先将池内空气抽走,然后吸入待测气体试样。

(2)液体试样

常用的方法有液膜法和液体池法。

液膜法:

沸点较高的试样,可直接滴在两片 KBr 盐片之间形成液膜进行测试。取两片 KBr 盐

片,用丙酮棉花清洗其表面并晾干。在一盐片上滴 1 滴试样,另一盐片压于其上,装入

到可拆式液体样品测试架中进行测定。扫描完毕,取出盐片,用丙酮棉花清洁干净后,

放回保干器内保存。粘度大的试样可直接涂在一片盐片上测定。也可以用 KBr 粉末压制

成锭片来替代盐片。

z 注意

盐片易吸水,取盐片时需戴上指套。

盐片装入液体样品测试架后,螺丝不宜拧得过紧,以免压碎盐片。

液体池法:

沸点较低、挥发性较大的试样或粘度小且流动性较大的高沸点样品,可以注入封闭

液体池中进行测试,液层厚度一般为 0.01-1mm。一些吸收很强的纯液体样品,如果在

减小液体池测试厚度后仍得不到好的图谱,可配成溶液测试。液体池要及时清洗干

净,不使其被污染。

(3)固体试样

常用的方法有压片法、石蜡糊法和薄膜法。

1北京大学化学学院中级仪器实验室 FTIR操作手册

压片法:

一般红外测定用的锭片为直径 13mm、厚度约 1mm左右的小片。取样品(约 1mg)与干燥

的KBr(约 200mg)在玛瑙研钵中混和均匀,充分研磨后(使颗粒达到约 2μm),将混

合物均匀地放入固体压片模具的顶模和底模之间,然后把模具放入压力机中,在 8T/cm

2

左右的压力下保持 1-2分钟即可得到透明或均匀半透明的锭片。取出锭片,装入固体

样品测试架中。

z 注意

溴化钾对钢制模具表面的腐蚀性很大,模具用后须及时清洗干净,然后放入保干器

中。

易吸水、潮解的样品不宜用压片法制样。

模具放入压力机内后,应先拧动顶阀,使压杆接近模具,然后关闭放气阀。小幅度

扳动扳手,使压力达到 8T/ cm

2

,保持 1-2 分钟。打开放气阀时,旋转幅度不要超过

30

!!

z 小技巧

对于难研磨样品,可先将其溶于几滴挥发性溶剂中再与溴化钾粉末混合成糊状,然

后研磨至溶剂挥发完全,也可在红外灯下赶走残留溶剂。

对于弹性样品如橡胶,可用低温(-40℃)使其变脆,再与溴化钾粉末混合研磨。

石蜡糊法:

将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测

试。

薄膜法:

固体样品制成薄膜进行测定可以避免基质或溶剂对样品光谱的干扰,薄膜的厚度为

10-30μm,且厚薄均匀。薄膜法主要用于高分子化合物的测定,对于一些低熔点的低分

子化合物也可应用。可将它们直接加热熔融后涂制或压制成膜,也可将试样溶解在低沸

点的易挥发溶剂中,涂到盐片上,待溶剂挥发后成膜来测定。

三. 中红外区透光材料

材料名称 化学组成 透光范围(cm

-1

) 水中溶解度(g/100mL) 折射率

氯化钠 NaCl 5000-625 35.7 1.54

溴化钾 KBr 5000-400 53.5 1.56

碘化铯 CsI 5000-165 44.0 1.79

KRS-5 TlBr,TlI 5000-250 0.02 2.37

氯化银 AgCl 5000-435 不溶 2.0

溴化银 AgBr 5000-285 不溶 2.2

氟化钡 BaF2 5000-830 0.17 1.46

氟化钙 CaF2 5000-1100 0.0016 1.43

硫化锌 ZnS 5000-710 不溶 2.2

硒化锌 ZnSe 5000-500 不溶 2.4

金刚石

(Ⅱ)

C 3400-2700;1650-600 不溶 2.42

锗 Ge 5000-430 不溶 4.0

硅 Si 5000-600 不溶 3.4

2北京大学化学学院中级仪器实验室 FTIR操作手册

四. VECTOR 22 FTIR光谱仪简介

VECTOR 22 FTIR 光谱仪由瑞士 Bruker公司制造。由光学台、计算机、打印机组成。

光谱范围:7500-370 cm

-1

分辨率:1cm

-1

信噪比:5500:1

波数精度:0.01cm

-1

红外光源:Globar(高强度空气冷却光源)

干涉仪:迈尔逊干涉仪(30

º

入射Rocksolid专利技术)

分束器:KBr上镀锗

检测器:DTGS(氘代硫酸三肽)

VECTOR 22 FTIR 光学台光路示意图

A-红外光源 B-孔径/薄膜轮 C-出口 D-光束分裂器

E.E

-窗口 F-样品支架 G-检测器

使用红外光谱仪时应注意保持室内清洁、干燥,不要震动光学台,取、放样品时,样品盖

应轻开轻闭。若改变测试参数,请做记录,测试完毕应复原。另外,眼睛不要注视氦-氖激

光,以免受到伤害。

3北京大学化学学院中级仪器实验室 FTIR操作手册

五. VECTOR 22 FTIR 光谱仪操作及软件应用

(一) 开机、关机

开机: .光学台ON

.计算机 ON (本计算机未设置密码)

.左双击 OPUS快捷键

.输入密码: OPUS(大写字母)

.User ID :选择 Administrator

.Assigned Workspaces: 不要修改

.单击 Login

.左击 OK,进入 OPUS 用户界面窗口(如下图)

关机: .关闭计算机各窗口后,关闭计算机

光学台 OFF.

(二)OPUS 用户界面介绍

(a) OPUS 软件所有功能的下拉菜单。

(b) 常用功能的快捷图标。

(c) OPUS 文件管理窗口,与Windows 浏览窗口相似。

(d) 谱图显示窗口。

(e) 概貌窗口,总是显示所选数据文件的整个频率范围的谱图。

(f) 在线帮助。

(g) 状态条显示后台运行的任务。

(h) 仪器状态指示。

4北京大学化学学院中级仪器实验室 FTIR操作手册

1. OPUS 浏览窗口

测量完成后产生的文件或打开的OPUS 文件时,其文件名、数据块和文件状态信息显示在

浏览窗口(屏幕左侧)。光标放在文件名上,将显示数据的完整路径;光标放在数据块上,

显示操作者姓名、样品名与样品形态。

(a) 单击可以缩小相应的谱图窗口。

(b) 蓝色表示此文件未经处理。文件名后面的数字,为该文件的拷贝数。

(c) 随文件所保存的所有数据块。图中图标表示有一个透过率光谱、一个单通道光谱、一个

干涉图和一个单通道背景光谱。如果数据块有颜色,表明相应谱图正显示在图谱窗口。

在文件名上单击鼠标右键,弹出文件操作菜单:

Save File: 对文件的任何处理不会自动保存到文件里。需点击Save File加以保存。

Unload File: 关闭文件。

Undo all Manipulations: 撤销对文件的所有处理。

Show Parameters: 显示该文件相应的参数和信息。

Copy Entry: 拷贝整个文件,包括所作的处理。

Clone Original: 仅拷贝原始文件。

5北京大学化学学院中级仪器实验室 FTIR操作手册

2.OPUS 谱图窗口

谱图窗口是在OPUS 用户界面的右边。当测量完成或文件调入后将会显示谱图。

默认的谱图显示区为4000~400cm

-1

和0~1.5 吸光度单位。通过Display—Scale All或单

击图标 可以显示全谱。

在谱图窗口的谱线上右击鼠标,出现下图所示菜单,可放大缩小谱图、改变谱图的显示

范围、添加标注、改变谱线颜色等。在谱图窗口的空白区右击鼠标,出现相似菜单,功能略

少。

Zoom In:放大谱图。按住鼠标左键拖动十字光标,框定需要放大的部分后,点击即放大。

从右键菜单中选择:Scale all Spectra / Show Everything(XY),即可恢复为全尺

寸谱图。

Zoom out:缩小谱图。操作方法同上。

Scale all Spectra ---- Show Everything(XY), 全范围显示所有谱图。

Maximize each spectrum(Y):将每个谱图的Y坐标均最大化显示。

Shift Curve:沿Y轴移动整个谱图或单向放大或缩小谱图。按住鼠标左键拖动谱图即可移动

或缩放。单击右键取消此功能。Reset 可还原。

Crosshair: Cursor,十字光标可在图谱区任意移动,显示相应点的X,Y 坐标。

Follow Data,光标仅沿谱线移动,很容易读出光谱上任意点的X,Y 坐标。

右击鼠标取消此功能。

Change Color:改变谱图颜色 。

Remove from Display: 从谱图窗口中去掉该谱图。

Add Annotation: 添加标注。单击谱图会在光标位置填加一个箭头,缺省显示该点的波数。

移动标注:按住鼠标左键拖动标注。

删除标注:在标注上单击鼠标右键,菜单中选择Remove。

编辑标注:在标注上单击鼠标右键,选择Properties。输入或编辑标注。

Properties: 设置谱图的横坐标和纵坐标。

6北京大学化学学院中级仪器实验室 FTIR操作手册

(三)光谱图的测试

测试光谱 Measure→Advanced Measurement

1 在 Basic 页,输入:

操作者姓名、样品名称、样品形态;。

2 在 Advanced 页,输入:

文件名

文件保存路径(此路径统一规定为:D:/DATA/导师姓名/学生姓名/),可输入或调出

分辨率(分辨率设为 4 cm

-1

,不要修改)

样品扫描次数(Scans)或样品扫描时间(Mimutes)

背景扫描次数(Scans)或样品扫描时间(Mimutes)

光谱测试范围(对中红外仪器,设置范围通常为:4000~400cm

-1

其它选项为常规设置,可以不改

3 另外的六个页面( 从 optic 至check signal)不要修改

4 在样品室中放入参比(或以空气作背景)

在 Basic 页,点 Background Single Channel ,测试背景

5 在样品室中放入样品

在 Basic 页,点 Sample Single Channel,测试样品

(注:以上设置的内容可以保存为一个方法文件:点 Save,选择保存路径,输入文件名。

文件名的后缀应是.XPM。以后测试时,只要在 Advanced 页点 Load,即可调出。)

(四) 显示谱图

测量完成后产生的文件或打开OPUS 文件后,其文件名、数据块和文件状态信息均显

示在浏览窗口(屏幕左侧小窗口)。光标放在文件名上,将显示文件的完整路径;光标放

在数据块上,显示操作者姓名、样品名与样品形态。

相应图谱显示在谱图窗口(在OPUS 用户界面的右侧窗口)。默认的谱图显示区为

4000~400cm

-1

和0~1.5 吸光度单位。通过Display—Scale All或单击图标 可以显

示全谱。

在谱图窗口的谱线上右击鼠标出现菜单,可放大缩小谱图、改变谱图的显示范围、添

加标注、改变谱线颜色等。在谱图窗口的空白区右击鼠标,出现相似菜单,功能略少。 具

体操作参见本手册第6页的相关介绍。

(五) 谱图处理

在实施各项谱图处理功能时,均有“Select Files”这一页,默认显示目前选中的谱图

文件名(在浏览窗口中打上红框的谱图文件)。若要添加文件,可将浏览窗口中所需谱图

的数据块(通常为吸收谱数据块或透射谱数据块)选中拖入即可。若要删除文件,选中文

件名后,按键盘上的“Delete”键。

1 基线校正 Manipulate → Baseline Correction

选择谱图(可对若干张谱图同时进行基线校正),再选择校正方法和校正点,点

Correct。经校正处理后的谱图自动覆盖原谱图。

Scattering Correction:校正后基线基本上落在0或100%处

Rubberband Correction:校正后部分基线不一定落在0或100%处

7北京大学化学学院中级仪器实验室 FTIR操作手册

Exclude CO2 Bands:扣除CO2谱段。选择此项,基线校正时对包含CO2的波段

(2400~2275cm

-1

、680~660cm

-1

)不予计算。

2 标峰位 Evaluate → Peak picking

选择谱图及需要标峰的谱区,设置灵敏度(峰的阈值),点Peak picking,谱图上将

显示峰位。

也可以选择互动模式来标峰:单击interactive mode,拖动阈值滑动条,标峰数量随

着阈值的变化而增减,由此可以比较方便地确定合适的阈值。点Store完成标峰。

3 谱图差减 Manipulate → Spectrum Subtraction

选择被减谱及减谱(减谱可是一个或若干个),选择谱区,点Subtract。得到的差谱

将覆盖被减谱。

若选择 Start Interactive Mode,可通过Times和 Changing digit设置不同的系数,

差谱 = 被减谱 – 系数 x 减谱

点Store完成差谱。可分别对几个谱图进行差减。

4 AB - TR 转换 Manipulate → AB - TR Conversion

透射谱和吸收谱之间互相转换。选择谱图,选择转换方向,点Conversion。新的谱

图将覆盖原谱图。

5 产生一段直线 Manipulate → Straight Conversion

产生一段直线命令用于消除谱图中的某些特殊干扰。选择谱图,设置频率范围,点

Generate。 谱图中这一段频率范围的谱线成为直线。

6 平滑 Manipulate → Smooth

选择谱图,定义平滑点数,单击Smooth。平滑点的可选值为5至25。还可以使用交互模

式平滑谱图。

8北京大学化学学院中级仪器实验室 FTIR操作手册

7 求导数 Manipulate → Derivative

选择光谱文件,选取平滑点和求导阶数,单击Process产生导数文件。导数谱显示在原

谱图的下方。

可对谱图计算一至五阶导数。求导的同时还可平滑光谱,以降低求导产生的噪声。其

最少平滑点数取决于求导的阶数。导数的阶越高,设置的点数应越多。最多允许25点。

8 1/cm - µm, nm Manipulate → 1/cm - µm, nm

改变横坐标单位。

9 积分 Integration

计算峰的面积和峰的高度。提供十八种积分方法。

10 归一化 Manipulate → Normalization

此功能是对谱图进行归一化处理和 Offset Correction。

选择要归一化的文件及频率范围,选择方法,点 Normalize。

有三种归一化方法:

(1) Min/Max Normalization --(最小/最大归一化):谱图的最小值变为 0,Y

轴的最大值扩展到 2 个吸收单位。对透射光谱归一化到 0到 1 的范围。

(2) Vector Normalization--(矢量归一化):首先计算光谱的平均值,然后

从谱图中减去平均值,因此谱图的中间下拉到 0;计算此时所有 Y 值的平方

和的平方根。原谱图除以此平方根值。经过这样处理的谱图,其矢量模方

为 1。

(3) Offset Correction—平移谱图,使最小 Y 值移至吸光值为 0。

11.气氛补偿Manipulate → Atomspheric Compensation

测量背景或样品谱时,光路中H2O/CO2的浓度的不同会造成H2O/CO2谱带的强度变

化。气氛补偿功能可以消除比率光谱图中H2O/CO2的干扰。

要进行气氛补偿的图谱文件,除了吸收(或透射)数据块外,还应包含 Single

Channel Sample Block和 Single Channel Background Block(测试前应在

Measure→Advanced Measurement 中,加选 single Channel 和Background 这二项数

据块加以保存)。

选择Manipulate → Atomspheric Compensation,将要处理谱图的Single

Channel Sample Block 和single Channel Reference Block 分别拖入相应的区域,

选中H2O Compensation 和CO2 Compensation,点Calculate 。

9北京大学化学学院中级仪器实验室 FTIR操作手册

(六)打印和拷盘

1.打印谱图 Print → Print Spectra

选择要打印的光谱图和有关数据块(如峰位数据块)

点Change Layout,选择图谱打印模板。常用的模板是:

Landscape-1, A4纸,一个光谱框,横打;

Portrait-2, A4纸,二个光谱框,竖打

Portrait-3, A4纸,三个光谱框,竖打

在Frequency Range中设置谱图打印区间;

在Options中,可选择Auto scale to all spectra ,将所有要打印的谱图均放大显

示。另外,光谱的X轴默认的是线性坐标,若要使用压缩坐标,可选择Use Compressed

Wavenumbers,2000 cm-1 以上的横坐标将压缩二倍。

需要注意的是:如果图谱打印模板包括一个以上光谱框,如Portrait-3, 一张A4纸上

打印三张独立的光谱图。这时,每个光谱框内要打印的谱图都要分别进行选择。选择方法

为:在Frame下拉框中选择光谱框名称,在文件选择中选择要打印在此光谱框内的文件。依

次操作,给每个光谱框中都选择好要打印的光谱图。

设置过程中可随时点击 Preview 进行预览。 待预览无误后,再点Print进行打印。

2.数据拷盘 File → Save File As

将图谱文件转化为数据文件后直接拷盘。须使用新软盘。

在 Select File 页中,选择要保存的文件,输入另存路径 A\(或在 Change Path 选

择)和文件名。

在 Mode 页选择 Date Point Table。

点 Save 完成。

10北京大学化学学院中级仪器实验室 FTIR操作手册

八.衰减全反射附件介绍

(一) 原理和特点

衰减全反射光谱(Attenuated Total Reflection Spectra 简称 ATR)又叫内反射

光谱(Internal Reflection Spectra)。发生全反射须具备两个条件:光从光密介质进

入光疏介质时才可能发生全反射;入射角要大于临界角。全反射现象不完全是在两种

介质的界面上进行的,部分光束要进入到光疏介质一段距离后才反射回来。透入到光

疏介质的光束,其强度随透入深度的增加按指数规律衰减。

ATR 谱具有以下特点:

(1) 红外辐射通过穿透样品与样品发生相互作用而产生吸收,因此 ATR 谱具有透射吸

收谱的特性和形状,但由于不同波数区间 ATR技术灵敏度不同,因此,ATR 谱吸

收峰相对强度与透射谱相比较并不完全一致。

(2) 非破坏性分析方法,能够保持原进行测定。

(二) 测试

1.ATR 附件的安装和调节

(1) 通过调节干涉仪选择光谱仪的能量。

(2) 用两个固定旋钮将 ATR 附件安装到光谱仪上。

(3) 仔细调节附件与光谱仪激光输出的相对位置,以获得最大输出。

(4) 用固定旋钮将 ATR 附件固定。

2.样品的准备

红外吸收谱是将样品与无样品在晶体上的背景光扣除得到。注意要保证样品完

全覆盖晶体表面。由于 ATR 晶体是由ZnSe 构成,易碎,易划伤。即使是轻微的划痕

也会导致信号输出的减小。因此清洗时需使用温和的清洗剂,如乙醇、丙酮或水。

固体样品和粉末样品直接置于 ATR晶体上,用附带的固定夹压紧。压紧时用金

属销向下拧紧,以保证样品与晶体的紧密接触。

液体样品适用于低粘度的液体。粘性液体要保证完全铺展在晶体表面。

2.谱图扫描及数据处理与一般红外谱相同

关于气体传感器的应用以及原理

气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。

气体的采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。

简单扩散是利用气体自然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体体积分数的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是将气体样本直接引入传感器而无需物理和化学变换。样品吸入式探头通常用于采样位置接近处理仪器或排气管道。这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计,但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某种目标气体和汽化物,如SiH4以及大多数生物溶剂,气体和汽化物样品量可能会因为其吸附作用甚至凝结在采样管壁上而减少。

气体传感器是化学传感器的一大门类。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。

1 主要特性

1.1 稳定性

稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。

1.2 灵敏度

灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制(TLV-thresh-old limit value)或最低爆炸限(LEL-lower explosive limit)的百分比的检测要有足够的灵敏性。

1.3选择性

选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。

1.4抗腐蚀性

抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。

气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到最优。

2 主要原理及分类

通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。

2.1 半导体气体传感器

半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。

自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当前应用最普遍、最具有实用价值的一类气体传感器,根据其气敏机制可以分为电阻式和非电阻式两种。

电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须工作于高温下、对气味或气体的选择性差、元件参数分散、稳定性不够理想、功率要求高.当探测气体中混有硫化物时,容易中毒。现在除了传统的SnO,Sn02和Fe203三大类外,又研究开发了一批新型材料,包括单一金属氧化物材料、复合金属氧化物材料以及混合金属氧化物材料。这些新型材料的研究和开发,大大提高了气体传感器的特性和应用范围。另外,通过在半导体内添加Pt,Pd,Ir等贵金属能有效地提高元件的灵敏度和响应时间。它能降低被测气体的化学吸附的活化能,因而可以提高其灵敏度和加快反应速度。催化剂不同,导致有利于不同的吸附试样,从而具有选择性。例如各种贵金属对Sn02基半导体气敏材料掺杂,Pt,Pd,Au提高对CH4的灵敏度,Ir降低对CH4的灵敏度;Pt,Au提高对H2的灵敏度,而Pd降低对H2的灵敏度。利用薄膜技术、超粒子薄膜技术制造的金属氧化物气体传感器具有灵敏度高(可达10-9级)、一致性好、小型化、易集成等特点。

非电阻式半导体气体传感器是MOS二极管式和结型二极管式以及场效应管式(MOSFET)半导体气体传感器。其电流或电压随着气体含量而变化,主要检测氢和硅烧气等可燃性气体。其中,MOSFET气体传感器工作原理是挥发性有机化合物(VOC)与催化金属(如钮)接触发生反应,反应产物扩散到MOSFET的栅极,改变了器件的性能。通过分析器件性能的变化而识别VOC。通过改变催化金属的种类和膜厚可优化灵敏度和选择性,并可改变工作温度。MOSFET气体传感器灵敏度高,但制作工艺比较复杂,成本高。

2.2 电化学型气体传感器

电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器,近年来,又开发了检测酸性气体和毒性气体的原电池式传感器。可控电位电解式传感器是通过测量电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO,NO,N02,02,S02等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过测量离子极化电流来检测气体的体积分数已电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。

2.3固体电解质气体传感器

固体电解质气体传感器是一种以离子导体为电解质的化学电池。20世纪70年代开始,固体电解质气体传感器由于电导率高、灵敏度和选择性好,获得了迅速的发展,现在几乎应用于环保、节能、矿业、汽车工业等各个领域,其产量大、应用广,仅次于金属氧化物半导体气体传感器。近来国外有些学者把固体电解质气体传感器分为下列三类:

1)材料中吸附待测气体派生的离子与电解质中的移动离子相同的传感器,例如氧气传感器等。

2)材料中吸附待测气体派生的离子与电解质中的移动离子不相同的传感器,例如用于测量氧气的由固体电解质SrF2H和Pt电极组成的气体传感器。

3)材料中吸附待测气体派生的离子与电解质中的移动离子以及材料中的固定离子都不相同的传感器,例如新开发高质量的C02固体电解质气体传感器是由固体电解质NASICON(Na3Zr2Si2P012)和辅助电极材料Na2CO3-BaC03或Li2C03-CaC03,Li2C03- BaC03组成的。

目前新近开发的高质量固体电解质传感器绝大多数属于第三类。又如:用于测量N02的由固体电解质NaSiCON和辅助电极N02- Li2C03制成的传感器;用于测量H2S的由固体电解质YST-Au-W03制成的传感器;用于测量NH3的由固体电解质NH4-Ca203制成的传感器;用于测量N02的由固体电解质Ag0.4Na7.6和电极Ag-Au制成的传感器等。

2.4接触燃烧式气体传感器

接触燃烧式气体传感器可分为直接接触燃烧式和催化接触燃烧式,其工作原理是气敏材料(如Pt电热丝等)在通电状态下,可燃性气体氧化燃烧或者在催化剂作用下氧化燃烧,电热丝由于燃烧而生温,从而使其电阻值发生变化。这种传感器对不燃烧气体不敏感,例如在铅丝上涂敷活性催化剂Rh和Pd等制成的传感器,具有广谱特性,即能检测各种可燃气体。这种传感器有时称之为热导性传感器,普遍适用于石油化工厂、造船厂、矿井隧道和浴室厨房的可燃性气体的监测和报警。该传感器在环境温度下非常稳定,并能对处于爆炸下限的绝大多数可燃性气体进行检测。

2.5光学式气体传感器

光学式气体传感器包括红外吸收型、光谱吸收型、荧光型、光纤化学材料型等,主要以红外吸收型气体分析仪为主,由于不同气体的红外吸收峰不同,通过测量和分析红外吸收峰来检测气体。目前的最新动向是研制开发了流体切换式、流程直接测定式和傅里叶变换式在线红外分析仪。该传感器具有高抗振能力和抗污染能力,与计算机相结合,能连续测试分析气体,具有自动校正、自动运行的功能。光学式气体传感器还包括化学发光式、光纤荧光式和光纤波导式,其主要优点是灵敏度高、可靠性好。

光纤气敏传感器的主要部分是两端涂有活性物质的玻璃光纤。活性物质中含有固定在有机聚合物基质上的荧光染料,当VOC与荧光染料发生作用时,染料极性发生变化,使其荧光发射光谱发生位移。用光脉冲照射传感器时,荧光染料会发射不同频率的光,检测荧光染料发射的光,可识别VOC。

2.6高分子气体传感器

近年来,国外在高分子气敏材料的研究和开发上有了很大的进展,高分子气敏材料由于具有易操作性、工艺简单、常温选择性好、价格低廉、易与微结构传感器和声表面波器件相结合等特点,在毒性气体和食品鲜度等方面的检测具有重要作用。高分子气体传感器根据气敏特性主要可分为下列几种:

l)高分子电阻式气体传感器

该类传感器是通过测量高分子气敏材料的电阻来测量气体的体积分数,目前的材料主要有欧菁聚合物、LB膜、聚毗咯等。其主要优点是制作工艺简单、成本低廉。但这种气体传感器要通过电聚合过程来激活,这既耗费时间,又会引起各批次产品之间的性能差异。

2)浓差电池式气体传感器

浓差电池式气体传感器的工作原理是:气敏材料吸收气体时形成浓差电池,测量输出的电动势就可测量气体体积分数,目前主要有聚乙烯醇-磷酸等材料。

3)声表面波(SAW)式气体传感器SAW气体传感器制作在压电材料的衬底上,一端的表面为输入传感器,另一端为输出传感器。两者之间的区域淀积了能吸附VOC的聚合物膜。被吸附的分子增加了传感器的质量,使得声波在材料表面上的传播速度或频率发生变化,通过测量声波的速度或频率来测量气体体积分数。主要气敏材料有聚异丁烯、氟聚多元醇等,用来测量苯乙烯和甲苯等有机蒸汽。其优势在于选择性高、灵敏度高、在很宽的温度范围内稳定、对湿度响应低和良好的可重复性。SAW传感器输出为准数字信号,因此可简便地与微处理器接口。此外,SAW传感器采用半导体平面工艺,易于将敏感器与相配的电子器件结合在一起,实现微型化、集成化,从而降低测量成本。

4)石英振子式气体传感器

石英振子微秤(QCM)由直径为数微米的石英振动盘和制作在盘两边的电极构成。当振荡信号加在器件上时,器件会在它的特征频率。~30MHz)发生共振。振动盘上淀积了有机聚合物,聚合物吸附气体后,使器件质量增加,从而引起石英振子的共振频率降低,通过测定共振频率的变化来识别气体。

高分子气体传感器,对特定气体分子的灵敏度高、选择性好,结构简单,可在常温下使用,补充其他气体传感器的不足,发展前景良好。

3 加工技术

在传感器技术里,气敏元件的制造工艺很多,但针对气体传感器的特性、材料,主要采用微电子机械技术(MEMT)。

微电子机械技术是以微电子技术和微加工技术为基础的一种新技术,分为体微机械技术、表面微机械技术和X射线深层光刻电铸成型(LIGA)技术。体微机械技术加工对象以体硅单晶为主,加工厚度几十至数百微米,关键技术是腐蚀技术和键合技术,优点是设备和工艺简单,但可靠性差;表面微机械技术利用半导体工艺,如氧化、扩散、光刻、薄膜沉积、牺牲层和剥离等专门技术进行加工,厚度为几微米,优点是与IC工艺兼容性好,但纵向尺寸小,无法满足高深宽比的要求,受高温的影响较大;LIGA技术采用传统的X射线包光,厚光刻胶作掩膜,电铸成型工艺,加工厚度达到数微米至数十微米,可实现重复精度很高的大批量生产。

微电子机械技术是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。

4 发展方向

近年来,由于在工业生产、家庭安全、环境监测和医疗等领域对气体传感器的精度、性能、稳定性方面的要求越来越高,因此对气体传感器的研究和开发也越来越重要。随着先进科学技术的应用,气体传感器发展的趋势是微型化、智能化和多功能化。深入研究和掌握有机、无机、生物和各种材料的特性及相互作用,理解各类气体传感器的工作原理和作用机理,正确选择各类传感器的敏感材料,灵活运用微机械加工技术、敏感薄膜形成技术、微电子技术、光纤技术等,使传感器性能最优化是气体传感器的发展方向。

4.1新气敏材料与制作工艺的研究开发

对气体传感器材料的研究表明,金属氧化物半导体材料Zn0,SIlo2,Fe203等己趋于成熟化,特别是在C比,C2H5OH,CO等气体检测方面。现在这方面的工作主要有两个方向:一是利用化学修饰改性方法,对现有气体敏感膜材料进行掺杂、改性和表面修饰等处理,

并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性;二是研制开发新的气体敏感膜材料,如复合型和混合型半导体气敏材料、高分子气敏材料,使得这些新材料对不同气体具有高灵敏度、高选择性、高稳定性。由于有机高分子敏感材料具有材料丰富、成本低、制膜工艺简单、易于与其它技术兼容、在常温下工作等优点,已成为研究的热点。

4.2新型气体传感器的研制

沿用传统的作用原理和某些新效应,优先使用晶体材料(硅、石英、陶瓷等),采用先进的加工技术和微结构设计,研制新型传感器及传感器系统,如光波导气体传感器、高分子声表面波和石英谐振式气体传感器的开发与使用,微生物气体传感器和仿生气体传感器的研究。随着新材料、新工艺和新技术的应用,气体传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点。

4.3气体传感器智能化

随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。

傅立叶红外变换能检测那些物质?原理分别是什么?

傅立叶红外有两种一种是真对气体分析的,一种使普通的

一 气体分析

用于对现场环境空气的快速分析,可应用于应急监测,污染源调查,劳动卫生,消防,防化等领域GASMET Dx4020使用Temet独有傅立叶变换红外光谱仪、特制温控分析单元和信号处理电路,结构非常牢固,抗震性强,适于野外工作,是现场快速分析的理想工具。

GASMET Dx4020可同时分析中红外有吸收的气体,可选择不同量程范围,联机CALCMET分析软件有光谱库提供众多的成分供用户参考,可以分析出未知气体组分。

GASMET Dx4020的校准采用简单的每种组分分别标定,只需出厂进行一次初始标定后,无需再次标定。

升级组分方法非常简便,用户只需用新的组分标气进行一次标定即可完成。

日常维护工作量和费用很低,每1到2年进行一次检查维护。 GASMET Dx4020的技术参数及推荐配置 Gigar干涉仪:分辨率:8cm-1扫描速度:10次/秒检测器:PMCT

红外光源:Sic, 1550K分束器:ZnSe窗口:ZnSe波长范围:900 - 4200cm-1样气室Sample Cell工作温度:50oC

多次反射光程:9.8m材料:100% 黄金涂层反射镜:固定,黄金涂层体积:1.07L接口:Swagelok 6 mm or 1/4"密封:Viton®O-rings 数据接口 通讯:RS-232 D型9孔

内置采样泵

样气流量:2-10L/min尘过滤要求:2µ样气压力要求:大气

电源

220VAC 50Hz, 12VDC

CALCMET

图形分析工作站

出厂标定光谱库CalcmetLibrary

光普库搜索LibrarySearch

测量时间可选1秒-5分钟

自动存储测量光谱图

回放历史数据… …

附件

便携箱

12VDC 车载充电器及电缆线

12VDC 汽车电池夹及电缆线

充电电池组

标 定

50组分出厂标定

二普通型

适用于常规实验室分析使用。节省空间的主机,操作方便的界面,使学习操作IR系列非常容易。

IR100,系统内置交互式Encompass分析软件,高质量彩色大屏幕LCD显示分析谱图,不需要外接计算机,节省费用和实验室空间,标准鼠标控制软件操作,或选择触摸屏选项,分析软件界面直观,操作快速,功能完善。垂询电话:022-27465555

对于希望使用计算机控制FTIR并且要求软件操作方便的实验室来说, IR200是一个好的选择。

仅需要最少的培训时间,不需要学习使用复杂软件,可有更多的宝贵时间来分析您的样品,保证您在最短的分析时间内获得最可靠的分析结果。

傅立叶变换红外光谱仪

宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁,并吸收相应的红外光而产生的光谱称为红外光谱。19世纪初,人们通过实验证实了红外光的存在。20世纪初,人们进一步系统地了解了不同官能团具有不同红外吸收频率这一事实。1950年以后出现了自动记录式红外分光光度计。随着计算机科学的进步,1970年以后出现了傅立叶变换红外光谱仪。近年来,红外测定技术如反射红外、显微红外、光声光谱以及色谱-红外联用等得到不断发展和完善,红外光谱法在宝石鉴定与研究领域得到了广泛的应用。

一、基本原理

能量在4000~400cm-1的红外光不足以使样品产生分子电子能级的跃迁,而只是振动能级与转动能级的跃迁。由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱属一种带状光谱。分子在振动和转动过程中,当分子振动伴随偶极矩改变时,分子内电荷分布变化会产生交变电场,当其频率与入射辐射电磁波频率相等时才会产生红外吸收。

红外光谱产生的条件:①辐射应具有能满足物质产生振动跃迁所需的能量;②辐射与物质间有相互偶合作用。例对称分子没有偶极矩,辐射不能引起共振,无红外活性,如N2、O2、Cl2等。而非对称分子有偶极矩,具红外活性。

(一)多原子分子的振动

多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其分子真实振动光谱比双原子分子要复杂,但在一定条件下作为很好的近似,分子一切可能的任意复杂的振动方式都可以看成是有限数量的且相互独立的和比较简单的振动方式的叠加,这些相对简单的振动称为简正振动。

(二)简正振动的基本形式

一般将简正振动形式分成两类:伸缩振动和弯曲振动(变形振动)。

1.伸缩振动

指原子间的距离沿键轴方向发生周期性变化,而键角不变的振动称为伸缩振动,通常分为对称伸缩振动和不对称伸缩振动。对同一基团,不对称伸缩振动的频率要稍高于对称伸缩振动,而官能团的伸缩振动一般出现在高波数区。

2.弯曲振动(又称变形振动)

指具有一个共有原子的两个化学键键角的变化,或与某一原子团内各原子间的相互运动无关的、原子团整体相对于分子内其他部分的运动。多表现为键角发生周期变化而键长不变。变形振动又分为面内变形和面外变形振动。面内变形振动又分为剪式和平面摇摆振动。面外变形振动又分为非平面摇摆和扭曲振动(见图2-2-12)。

图2-2-12 简正振动的基本形式

“+”表示运动方向垂直于纸面向里;“-”表示运动方向垂直于纸面向外

(三)红外光区的划分

红外光谱位于可见光和微波区之间,即波长约为0.78~1000μm范围内的电磁波,通常将整个红外光区分为以下三个部分:

1.远红外光区

波长范围为25~1000μm,波数范围为400~10cm-1。该区的红外吸收谱带主要是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。在宝石学中应用极少。

2.中红外光区

波长范围为2.5~25μm,波数范围为4000~400cm-1。即振动光谱区。它涉及分子的基频振动,绝大多数宝石的基频吸收带出现在该区。基频振动是红外光谱中吸收最强的振动类型,在宝石学中应用极为广泛。通常将这个区间分为两个区域,即称基团频率区和指纹区。

基频振动区(又称官能团区),在4000~1500cm-1区域出现的基团特征频率比较稳定,区内红外吸收谱带主要由伸缩振动产生。可利用这一区域特征的红外吸收谱带,去鉴别宝石中可能存在的官能团。

指纹区分布在1500~400cm-1区域,除单键的伸缩振动外,还有因变形振动产生的红外吸收谱带。该区的振动与整个分子的结构有关,结构不同的分子显示不同的红外吸收谱带,所以这个区域称为指纹区,可以通过该区域的图谱来识别特定的分子结构。

3.近红外光区

波长范围为0.78~2.5μm,波数范围为12820~4000cm-1,该区吸收谱带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收所致。如绿柱石中OH的基频伸缩振动在3650cm-1,伸/弯振动合频在5250cm-1,一级倍频在7210cm-1处。

二、仪器类型和测试方法

按分光原理,红外光谱仪可分为两大类:即色散型(单光束和双光束红外分光光度计)和干涉型(傅立叶变换红外光谱仪)。色散型红外光谱仪的主要不足是自身局限性较大,扫描速度慢,灵敏度和分辨率低。目前在宝石测试与研究中,主要采用傅立叶变换红外光谱仪。

在傅立叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品。经检测器(探测器—放大器—滤波器)获得干涉图,由计算机将干涉图进行傅立叶变换得到光谱(见图2-2-13至2-2-15)。其特点是:扫描速度快,适合仪器联用;不需要分光,信号强,灵敏度高。

图2-2-13 傅立叶变换红外光谱仪

图2-2-14 傅立叶变换红外光谱仪内部结构

图2-2-15 傅立叶变换红外光谱仪工作原理示意图

用于宝石的红外吸收光谱的测试方法可分为两类,即透射法和反射法。

1.透射法

透射法又可分为粉末透射法和直接透射法。粉末透射法属一种有损测试方法,具体方法是将样品研磨成2µm以下的粒径,用溴化钾以1:100~1:200的比例与样品混合并压制成薄片,即可测定宝石矿物的透射红外吸收光谱。直接透射法是将宝石样品直接置于样品台上,由于宝石样品厚度较大,表现出2000cm-1以外波数范围的全吸收,因而难以得到宝石指纹区这一重要的信息。直接透射技术虽属无损测试方法(见图2-2-16),但从中获得有关宝玉石的结构信息十分有限,由此限制了红外吸收光谱的进一步应用。特别对于一些不透明宝玉石、图章石和底部包镶的宝玉石饰品进行鉴定时,则难以具体实施。

2.反射法

红外反射光谱是红外光谱测试技术中一个重要的分支,目前在宝玉石的测试与研究中备受关注,根据采用的反射光的类型和附件分为:镜反射、漫反射、衰减全反射和红外显微镜反射法。红外反射光谱(镜、漫反射)在宝石鉴定与研究领域中具有较广阔的应用前景。根据透明或不透明宝石的红外反射光谱表征,有助于获取宝石矿物晶体结构中羟基、水分子的内、外振动,阴离子、络阴离子的伸缩或弯曲振动,分子基团结构单元及配位体对称性等重要的信息,特别是为某些充填处理的宝玉石中有机高分子充填材料的鉴定提供了一种便捷、准确、无损的测试方法(见图2-2-17)。

基于宝石样品的研究对比和鉴定之目的,可分别采用Nicolet550型傅立叶变换红外光谱仪及镜面反射附件和TENSOR-27型傅立叶变换红外光谱仪及“漫反射附件”。在具体测试过程中,视样品的具体情况,采用分段测试的方法(即分为4000~2000cm-1,2000~400cm-1)对相关的宝石样品进行测试。考虑到宝石的红外反射光谱中,由于折射率在红外光谱频率范围的变化(异常色散作用)而导致红外反射谱带产生畸变(似微分谱形),要将这种畸变的红外反射光谱校正为正常的并为珠宝鉴定人员所熟悉的红外吸收光谱,可通过Dispersion校正或Kramers Kronig变换的程序予以消除。具体方法为:若选用Nicolet550型红外光谱仪的镜面反射附件测得宝石红外反射光谱,则采用OMNIC软件内Process下拉菜单中Other Correc-tions里选择Dispersion进行校正;同理,若采用TENSOR-27型红外光谱仪的“漫反射附件”测得宝石的红外反射光谱,可用其OPUS软件内谱图处理下拉菜单中选择Kramers Kronig变换予以校正(简称K-K变换)。下文中,将经过Dispersion校正或K-K变换的红外反射光谱,统称为红外吸收光谱。

图2-2-16 充填处理翡翠红外吸收光谱(透射法)

图2-2-17 白玉及其仿制品的红外吸收光谱(反射法,经K-K转换)

三、宝石学中的应用

红外吸收光谱是宝石分子结构的具体反映。通常,宝石内分子或官能团在红外吸收光谱中分别具自己特定的红外吸收区域,依据特征的红外吸收谱带的数目、波数位及位移、谱形及谱带强度、谱带分裂状态等项内容,有助于对宝石的红外吸收光谱进行定性表征,以期获得与宝石鉴定相关的重要信息。

1.宝石中的羟基、水分子

基频振动(中红外区)作为红外吸收光谱中吸收最强的振动类型,在宝石学中的应用最为广泛。通常将中红外区分为基频区(又称官能团区,4000~1500cm-1)和指纹区(1500~400cm-1)两个区域。

自然界中,含羟基和H2O的天然宝石居多,与之对应的伸缩振动导致的中红外吸收谱带主要集中分布在官能团区3800~3000cm-1波数范围内。而弯曲振动导致的红外吸收谱带则变化较大,多数宝石的红外吸收谱带的位1400~17000cm-1波数范围内。通常情况下,羟基或水分子的具体波数位置,亦受控于宝石中氢键力的大小。至于具体的波数位,则主要取决于各类宝石内的氢键力的大小。与结晶水或结构水相比,吸附水的对称和不对称伸缩振动导致的红外吸收宽谱带中心主要位3400cm-1处。

例如,天然绿松石晶体结构中普遍存在结晶水和吸附水,其中由羟基伸缩振动致红外吸收锐谱带位于3466cm-1、3510cm-1处,而由v(MFeCu—COH)伸缩振动导致的红外吸收谱带则位于3293cm-1、3076 cm-1处,多呈较舒缓的宽谱态展布。同时,在指纹区内显示磷酸盐基团的伸缩与弯曲振动导致的红外吸收谱带。

反之在官能团区域内,吉尔森仿绿松石中明显缺乏天然绿松石所特有的由羟基和水分子伸缩振动致红外吸收谱带,同时显示由高分子聚合物中

不对称伸缩振动致红外吸收锐谱带(2925cm-1)、vs(CH2)对称伸缩振动致红外吸收锐谱带(2853cm-1),同时伴有vas(CH3)不对称伸缩振动致红外吸收锐谱带(2959cm-1)。指纹区内,显示碳酸根基团振动的特征红外吸收谱带。测试结果表明,俗称吉尔森法绿松石实属压制碳酸盐仿绿松石。(见图2-2-18)。

图2-2-18 绿松石与仿绿松石的红外吸收光谱(R%为反射谱,A%经K-K转换)

同理,根据助熔剂法合成祖母绿与水热法合成祖母绿的红外吸收光谱中有无水分子伸缩振动致吸收谱带而给予区分。助熔剂法合成祖母绿是在高温熔融条件下结晶而成,故其结构通道内一般不存在水分子;而水热法合成祖母绿是在水热条件下结晶生长而成,在其结构通道中往往存在不等量的水分子和少量氯酸根离子(矿化剂)。

2.钻石中杂质原子的存在形式及类型划分

钻石主要由C原子组成,当其晶格中存在少量的N、B、H等杂质原子时,可使钻石的物理性质如颜色、导热性、导电性等发生明显的变化。基于红外吸收光谱表征,有助于确定杂质原子的成分及存在形式,并作为钻石分类的主要依据之一(见表2-2-1)。

表2-2-1 钻石的类型及红外吸收光谱特征

3.人工充填处理宝玉石的鉴别

由两个或两个以上环氧基,并以脂肪族、脂环族或芳香族等官能团为骨架,通过与固化剂反应生成三维网状结构的聚合物类的环氧树脂,多以充填物的形式,广泛应用在人工充填处理翡翠、绿松石及祖母绿等宝玉石中。环氧树脂的种类很多,并且新品种仍不断出现。常见品种为环氧化聚烯烃、过醋酸环氧树脂、环氧烯烃聚合物、环氧氯丙烷树脂、双酚A树脂、环氧氯丙烷-双酚A缩聚物、双环氧氯丙烷树脂等。由图2-2-16可以看出,与蜡质物的红外吸收光谱表征明显不同的是,在充填处理翡翠中,环氧树脂中由苯环伸缩振动致红外吸收弱谱带位3028cm-1处(图中蓝圈处);与之对应由vas(CH2)不对称伸缩振动致红外吸收谱带位2922cm-1处,而vs(CH2)对称伸缩振动致红外吸收锐谱带则位2850cm-1处(图中红圈处)。

利用镜反射附件对底部封镶的天然翡翠饰品(如铁龙生)进行红外反射光谱测试时,要注意排除粘结在贵金属底托上的胶质物的干扰,因为贵金属底托起到背衬镜的作用,由此反射回的红外光一并穿透胶质物和未处理翡翠样品,有时易显示充填处理翡翠的红外吸收光谱特征。

图2-2-19为充填处理绿松石的红外吸收光谱。官能团区内,除绿松石中羟基、水分子伸缩振动致红外吸收谱带外,在2930cm-1、2857cm-1处显示由外来高分子聚合物中vas(CH2)、vs(CH2)的不对称和对称伸缩振动,其苯环伸缩振动致红外谱带多被v(M—OH)吸收谱带所包络。

4.相似宝石种类的鉴别

不同种属的宝石,在其晶体结构、分子配位基结构及化学成分上存在一定的差异,依据各类宝石特征的红外吸收光谱有助于鉴别之。日常检测过程中,检验人员时常会遇到一些不透明或表面抛光较差的翡翠及其相似玉石的鉴别难题,而红外反射光谱则提供了一个快速无损的测试手段。利用红外反射光谱指纹区内硬玉矿物中Si—Onb伸缩振动和Si—Obr—Si及O—Si—O弯曲振动致红外吸收谱带(经K-K变换)的波数位置及位移、谱形及谱带强度、谱带分裂状态等特征,极易将它们区分开(见图2-2-20)。

图2-2-19 绿松石与充填处理绿松石的红外吸收光谱(经K-K转换)

图2-2-20 天然翡翠与仿制品的红外吸收光谱(经K-K转换)

5.仿古玉的红外吸收光谱

一些仿古玉器在制作过程中,常采用诸如强酸(如HF酸)腐蚀或高温烘烤等方法进行老化做旧处理。经上述方法处理的玉器表面或呈白(渣)化、或酸蚀残化(斑)、或呈牛毛网纹状,对其玉质的正确鉴别往往带来一定的难度。利用“漫反射红外附件”有助于对这类老化做旧处理玉器进行鉴别。图2-2-21显示,由指纹区内Si—O、Si—O—Si的伸缩振动和弯曲振动致红外吸收谱带,足以证实该玉器的主矿物成分为透闪石(标识为软玉)。

图2-2-21 仿古玉制品的红外吸收光谱(经K-K转换)

傅立叶红外气体分析仪实验报告的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于傅立叶红外测试方法、傅立叶红外气体分析仪实验报告的信息别忘了在本站进行查找喔。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624