资讯

承天示优,优品至上。

傅立叶红外光谱用途(傅立叶近红外光谱)

承天示优官方账号 2023-02-05 资讯 779 views 0

又到了我们给大家分享有关傅立叶红外光谱用途的时候了,同时我们也会对与之对应的傅立叶近红外光谱进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

为什么说傅里叶光谱在红外区有统治地位?

红外光谱技术的最新进展是傅里叶变换红外光谱(FTIR)技术。

FTIR在信噪比、分辨率、速度和探测极限上具有很多优势。在红外研究领域,FTIR方法几乎完全取代了光栅分光法。

傅里叶变换光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的分辨率和信噪比;同时它的数字化的光谱数据,也便于计算机处理。正是这些基本优点,使傅里叶变换红外光谱方法发展成为目前中、远红外波段中最有力的光谱工具。

FTIR的优点

1. 多通道(Fellgett优点)

在色散型仪器中,由于检测器只能响应入射光强度的变化,不能响应入射光频率。因此,在测量时,需把入射的复色光用单色器色散为不同频率的分辨单元。为了检测这些相对纯化的光,就需要用光阑窄缝滤掉绝大部分色散后的单色光,仅让某一频率单色光通过。为了能测定全光谱,只好顺序多次测定色散后不同频率的单色光。

对于FTIR光谱仪,入射光被干涉仪调制成声频波,不同频率的光被调制成不同的值,所用探测器既获得强度信息,又获得频率信息。各种频率光同时落到探测器上,无需分光测量。这样色散仪器每次仅测量全光谱很小的一部分,而FTIR却测了全部光谱。如在 波段范围内,用 分辨率进行测量,则测量所需分辨单元数 。用色散光谱仪在T时间内对 波段测量时,每个分辨单元所需的测定时间为 。与此相应,FTIR则为T。由于随机噪声引起的信噪比 与测量时间成正比,所以FTIR比色散型光谱仪信噪比高的多,并且分辨率越高, 提高越大。在0.1cm-1分辨率时, 提高近190倍。显然多通道的优点使FTIR的信噪比增加,伴随而来的是检测灵敏度大幅提高。

2. 高光通量(Jacquinot优点)

在色散型仪器中,光路里设有狭缝式光阑,绝大部分光被它挡住,仅使极少部分光通过,并且分辨率越高,狭缝调得越窄,实际通过得光越少。加之光路中得许多光学元件也会损失光能,因而使色散型仪器光通量很小。FTIR光谱仪中除了有光能损失很少外,经常不设限光狭缝或其他限光元件。光可全部通过光孔,光通量很大。

光学系统的光通量Ω指通过它传送的光的总能量。光通量定义为光束的面积和立体角的乘积,即光阑面积和向准直镜孔径所张立体角的乘积,或者等效为准直光的面积和它的发散的立体角的乘积

在一些低分辨率的光谱仪中没有准直光阑,光源或探测器起着有效光阑的作用,限制了光通量的大小。

为了获得理想准直的光束(光束完美的平行),光阑必须无穷小,于是光通过量为零。光阑越大,光通量越大,而被准直的光束也越发散。然而,干涉仪中光束的发散度,或者它的光通量,是受到所要求的光谱分辨率限制的。因为对于一个给定的动镜位移,以不同的角度通过干涉仪的光线到达真正光轴有不同的光程差,它们对总干涉图信号的各自贡献将会模糊掉每个动镜位移的光程差。因此,分辨率要求越高,光发散要求越小。最佳的通过量与所研究的最高频率处的光谱分辨率是完全一致的。最大光通量定量地与光谱分辨率成比例

3. 高测量精度(Connes优点)

色散型仪器的精度受很多条件的限制。如校正谱图精度的校样纯度、机械部件移动以及人为的读书误差等,都使这类仪器测量精度难于提高。一般很难达到0.1cm-1精度。

FTIR光谱仪的光学结构简单,干涉仪只有一个动镜是运动部件,通常动镜是在无摩擦的空气轴承上移动,其运动又受高度稳定的He-Ne激光干涉系统监控,因此测量的重复性和准确度都很十分高。加之在FTIR系统中,使用了单色性极好的He-Ne激光干涉系统作为采样标尺,确保采样精度达到 0 .001cm-1。

4. 测量波段宽,全波段内分辨率一致

色散型光谱仪测量时,用色散法配以光阑狭缝取得单色光。但这些不同频率的单色光能量又不尽相同。为了保持所获得的能量近似不变,常常需要不断改变狭缝宽度,或用其他技术来调节光通量。这在技术上是很困难的。一种简化的办法是在中红外测量全波段光谱时,使用两种分辨率。色散型光谱仪无法在全波段范围内分辨率一致。

FTIR光谱仪以干涉法采集数据,以数字形式存储数据和运算,很容易做到分辨率一致。极宽的测量波段也是FTIR光谱仪特有的优点。它可用改换光源、分束器、探测器的办法,在同一台FTIR光谱仪上实现多波段测量。

傅里叶红外光谱仪可以对可见光光源进行光谱分析吗

可以的。

如果用可见光作为光源,那么检测的应该是近红外光谱区域(near-IR)。相应的要将红外仪常规的溴化钾(KBr)分束器更换成氟化钙(CaF2) 分束器,用以提高对可见光的透过率,从而增加光谱的信噪比。

5. 傅里叶变换红外光谱仪的基本结构,有哪些特点?简述工作原理?

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。

红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于分子的结构特征。这就是红外光谱测定化合物结构的理论依据。

红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。

傅里叶红外光谱仪由光源、迈克尔逊干涉仪、样品池、检测器和计算机组成,由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。当上述干涉光通过样品时某一些波长的光被样品吸收,成为含有样品信息的干涉光,由计算机采集得到样品干涉图,经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

傅里叶红外光谱仪可以检验哪些成分

红外主要是具有检测指定官能团的能力

根据各种官能团的红外特征谱带对比,几乎所有官能团都能从红外谱图上区分

傅里叶变换红外光谱仪一般使用的光源是什么?

现在的傅里叶红外光谱仪,主要用两种光源,一种是陶瓷光源,一般宣传资料会写空冷的陶瓷光源,每个厂家的冷却方式各有不同,记得好像有的是采用冷挡板的,但是都属于空冷一类。另外比较好的光源就是改良式的硅碳棒光源,与教科书写的硅碳棒光源有所不同,以前的硅碳棒光源制作工艺局限,效果不好。现在的硅碳棒光源使用寿命长,并且能够实现控温设计。在尼高力的红外光谱仪,高端的产品中就应用了控温功能,休眠,常温以及一个高能量的功能,还是很不错的。能量的分布改良的硅碳棒光源也比陶瓷光源要好,主要是能量高。

普通红外和傅里叶红外的区别是什么?各自有什么特点??

FT-IR 比光栅式IR 的检测器有更好的信噪比。傅里叶变换在IR 和NIR 本来的设计作用: 1、FT 的快速信号处理能力可以快速地把干涉器产生的干涉图谱转换为IR 或NIR 吸收图谱2、这样一来FT-变换便可以把IR 所采用的高噪音检测器带来的巨大随机噪音减小3、但NIR 近红外与IR 中红外所采用的灯源和检测器并不一样4、 NIR 大部分的噪音来自灯源, 但灯的噪音并不是随机的, 所以FT-变换对NIR 并没有用处。结论: FT-变换可用来产生IR 和NIR 吸收图谱, FT也可以减小随机噪音, NIR 的噪音并不是来自检测器的随机噪音, 所以FT-变换在NIR 是没有用途!参考文献:光栅式近红外(NIR)和傅立叶近红外(FT-NIR)认识中的若干误区

今天的傅立叶红外光谱用途有关的说明就先聊到这里啦,想指导更多有关于傅立叶近红外光谱的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624