资讯

承天示优,优品至上。

傅立叶变换红外光谱仪国标(傅立叶变换红外光谱仪用途)

承天示优官方账号 2023-02-03 资讯 637 views 0

又到了我们给大家分享有关傅立叶变换红外光谱仪国标的时候了,同时我们也会对与之对应的傅立叶变换红外光谱仪用途进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

傅立叶变换红外光谱仪

宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁,并吸收相应的红外光而产生的光谱称为红外光谱。19世纪初,人们通过实验证实了红外光的存在。20世纪初,人们进一步系统地了解了不同官能团具有不同红外吸收频率这一事实。1950年以后出现了自动记录式红外分光光度计。随着计算机科学的进步,1970年以后出现了傅立叶变换红外光谱仪。近年来,红外测定技术如反射红外、显微红外、光声光谱以及色谱-红外联用等得到不断发展和完善,红外光谱法在宝石鉴定与研究领域得到了广泛的应用。

一、基本原理

能量在4000~400cm-1的红外光不足以使样品产生分子电子能级的跃迁,而只是振动能级与转动能级的跃迁。由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱属一种带状光谱。分子在振动和转动过程中,当分子振动伴随偶极矩改变时,分子内电荷分布变化会产生交变电场,当其频率与入射辐射电磁波频率相等时才会产生红外吸收。

红外光谱产生的条件:①辐射应具有能满足物质产生振动跃迁所需的能量;②辐射与物质间有相互偶合作用。例对称分子没有偶极矩,辐射不能引起共振,无红外活性,如N2、O2、Cl2等。而非对称分子有偶极矩,具红外活性。

(一)多原子分子的振动

多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其分子真实振动光谱比双原子分子要复杂,但在一定条件下作为很好的近似,分子一切可能的任意复杂的振动方式都可以看成是有限数量的且相互独立的和比较简单的振动方式的叠加,这些相对简单的振动称为简正振动。

(二)简正振动的基本形式

一般将简正振动形式分成两类:伸缩振动和弯曲振动(变形振动)。

1.伸缩振动

指原子间的距离沿键轴方向发生周期性变化,而键角不变的振动称为伸缩振动,通常分为对称伸缩振动和不对称伸缩振动。对同一基团,不对称伸缩振动的频率要稍高于对称伸缩振动,而官能团的伸缩振动一般出现在高波数区。

2.弯曲振动(又称变形振动)

指具有一个共有原子的两个化学键键角的变化,或与某一原子团内各原子间的相互运动无关的、原子团整体相对于分子内其他部分的运动。多表现为键角发生周期变化而键长不变。变形振动又分为面内变形和面外变形振动。面内变形振动又分为剪式和平面摇摆振动。面外变形振动又分为非平面摇摆和扭曲振动(见图2-2-12)。

图2-2-12 简正振动的基本形式

“+”表示运动方向垂直于纸面向里;“-”表示运动方向垂直于纸面向外

(三)红外光区的划分

红外光谱位于可见光和微波区之间,即波长约为0.78~1000μm范围内的电磁波,通常将整个红外光区分为以下三个部分:

1.远红外光区

波长范围为25~1000μm,波数范围为400~10cm-1。该区的红外吸收谱带主要是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。在宝石学中应用极少。

2.中红外光区

波长范围为2.5~25μm,波数范围为4000~400cm-1。即振动光谱区。它涉及分子的基频振动,绝大多数宝石的基频吸收带出现在该区。基频振动是红外光谱中吸收最强的振动类型,在宝石学中应用极为广泛。通常将这个区间分为两个区域,即称基团频率区和指纹区。

基频振动区(又称官能团区),在4000~1500cm-1区域出现的基团特征频率比较稳定,区内红外吸收谱带主要由伸缩振动产生。可利用这一区域特征的红外吸收谱带,去鉴别宝石中可能存在的官能团。

指纹区分布在1500~400cm-1区域,除单键的伸缩振动外,还有因变形振动产生的红外吸收谱带。该区的振动与整个分子的结构有关,结构不同的分子显示不同的红外吸收谱带,所以这个区域称为指纹区,可以通过该区域的图谱来识别特定的分子结构。

3.近红外光区

波长范围为0.78~2.5μm,波数范围为12820~4000cm-1,该区吸收谱带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收所致。如绿柱石中OH的基频伸缩振动在3650cm-1,伸/弯振动合频在5250cm-1,一级倍频在7210cm-1处。

二、仪器类型和测试方法

按分光原理,红外光谱仪可分为两大类:即色散型(单光束和双光束红外分光光度计)和干涉型(傅立叶变换红外光谱仪)。色散型红外光谱仪的主要不足是自身局限性较大,扫描速度慢,灵敏度和分辨率低。目前在宝石测试与研究中,主要采用傅立叶变换红外光谱仪。

在傅立叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品。经检测器(探测器—放大器—滤波器)获得干涉图,由计算机将干涉图进行傅立叶变换得到光谱(见图2-2-13至2-2-15)。其特点是:扫描速度快,适合仪器联用;不需要分光,信号强,灵敏度高。

图2-2-13 傅立叶变换红外光谱仪

图2-2-14 傅立叶变换红外光谱仪内部结构

图2-2-15 傅立叶变换红外光谱仪工作原理示意图

用于宝石的红外吸收光谱的测试方法可分为两类,即透射法和反射法。

1.透射法

透射法又可分为粉末透射法和直接透射法。粉末透射法属一种有损测试方法,具体方法是将样品研磨成2µm以下的粒径,用溴化钾以1:100~1:200的比例与样品混合并压制成薄片,即可测定宝石矿物的透射红外吸收光谱。直接透射法是将宝石样品直接置于样品台上,由于宝石样品厚度较大,表现出2000cm-1以外波数范围的全吸收,因而难以得到宝石指纹区这一重要的信息。直接透射技术虽属无损测试方法(见图2-2-16),但从中获得有关宝玉石的结构信息十分有限,由此限制了红外吸收光谱的进一步应用。特别对于一些不透明宝玉石、图章石和底部包镶的宝玉石饰品进行鉴定时,则难以具体实施。

2.反射法

红外反射光谱是红外光谱测试技术中一个重要的分支,目前在宝玉石的测试与研究中备受关注,根据采用的反射光的类型和附件分为:镜反射、漫反射、衰减全反射和红外显微镜反射法。红外反射光谱(镜、漫反射)在宝石鉴定与研究领域中具有较广阔的应用前景。根据透明或不透明宝石的红外反射光谱表征,有助于获取宝石矿物晶体结构中羟基、水分子的内、外振动,阴离子、络阴离子的伸缩或弯曲振动,分子基团结构单元及配位体对称性等重要的信息,特别是为某些充填处理的宝玉石中有机高分子充填材料的鉴定提供了一种便捷、准确、无损的测试方法(见图2-2-17)。

基于宝石样品的研究对比和鉴定之目的,可分别采用Nicolet550型傅立叶变换红外光谱仪及镜面反射附件和TENSOR-27型傅立叶变换红外光谱仪及“漫反射附件”。在具体测试过程中,视样品的具体情况,采用分段测试的方法(即分为4000~2000cm-1,2000~400cm-1)对相关的宝石样品进行测试。考虑到宝石的红外反射光谱中,由于折射率在红外光谱频率范围的变化(异常色散作用)而导致红外反射谱带产生畸变(似微分谱形),要将这种畸变的红外反射光谱校正为正常的并为珠宝鉴定人员所熟悉的红外吸收光谱,可通过Dispersion校正或Kramers Kronig变换的程序予以消除。具体方法为:若选用Nicolet550型红外光谱仪的镜面反射附件测得宝石红外反射光谱,则采用OMNIC软件内Process下拉菜单中Other Correc-tions里选择Dispersion进行校正;同理,若采用TENSOR-27型红外光谱仪的“漫反射附件”测得宝石的红外反射光谱,可用其OPUS软件内谱图处理下拉菜单中选择Kramers Kronig变换予以校正(简称K-K变换)。下文中,将经过Dispersion校正或K-K变换的红外反射光谱,统称为红外吸收光谱。

图2-2-16 充填处理翡翠红外吸收光谱(透射法)

图2-2-17 白玉及其仿制品的红外吸收光谱(反射法,经K-K转换)

三、宝石学中的应用

红外吸收光谱是宝石分子结构的具体反映。通常,宝石内分子或官能团在红外吸收光谱中分别具自己特定的红外吸收区域,依据特征的红外吸收谱带的数目、波数位及位移、谱形及谱带强度、谱带分裂状态等项内容,有助于对宝石的红外吸收光谱进行定性表征,以期获得与宝石鉴定相关的重要信息。

1.宝石中的羟基、水分子

基频振动(中红外区)作为红外吸收光谱中吸收最强的振动类型,在宝石学中的应用最为广泛。通常将中红外区分为基频区(又称官能团区,4000~1500cm-1)和指纹区(1500~400cm-1)两个区域。

自然界中,含羟基和H2O的天然宝石居多,与之对应的伸缩振动导致的中红外吸收谱带主要集中分布在官能团区3800~3000cm-1波数范围内。而弯曲振动导致的红外吸收谱带则变化较大,多数宝石的红外吸收谱带的位1400~17000cm-1波数范围内。通常情况下,羟基或水分子的具体波数位置,亦受控于宝石中氢键力的大小。至于具体的波数位,则主要取决于各类宝石内的氢键力的大小。与结晶水或结构水相比,吸附水的对称和不对称伸缩振动导致的红外吸收宽谱带中心主要位3400cm-1处。

例如,天然绿松石晶体结构中普遍存在结晶水和吸附水,其中由羟基伸缩振动致红外吸收锐谱带位于3466cm-1、3510cm-1处,而由v(MFeCu—COH)伸缩振动导致的红外吸收谱带则位于3293cm-1、3076 cm-1处,多呈较舒缓的宽谱态展布。同时,在指纹区内显示磷酸盐基团的伸缩与弯曲振动导致的红外吸收谱带。

反之在官能团区域内,吉尔森仿绿松石中明显缺乏天然绿松石所特有的由羟基和水分子伸缩振动致红外吸收谱带,同时显示由高分子聚合物中

不对称伸缩振动致红外吸收锐谱带(2925cm-1)、vs(CH2)对称伸缩振动致红外吸收锐谱带(2853cm-1),同时伴有vas(CH3)不对称伸缩振动致红外吸收锐谱带(2959cm-1)。指纹区内,显示碳酸根基团振动的特征红外吸收谱带。测试结果表明,俗称吉尔森法绿松石实属压制碳酸盐仿绿松石。(见图2-2-18)。

图2-2-18 绿松石与仿绿松石的红外吸收光谱(R%为反射谱,A%经K-K转换)

同理,根据助熔剂法合成祖母绿与水热法合成祖母绿的红外吸收光谱中有无水分子伸缩振动致吸收谱带而给予区分。助熔剂法合成祖母绿是在高温熔融条件下结晶而成,故其结构通道内一般不存在水分子;而水热法合成祖母绿是在水热条件下结晶生长而成,在其结构通道中往往存在不等量的水分子和少量氯酸根离子(矿化剂)。

2.钻石中杂质原子的存在形式及类型划分

钻石主要由C原子组成,当其晶格中存在少量的N、B、H等杂质原子时,可使钻石的物理性质如颜色、导热性、导电性等发生明显的变化。基于红外吸收光谱表征,有助于确定杂质原子的成分及存在形式,并作为钻石分类的主要依据之一(见表2-2-1)。

表2-2-1 钻石的类型及红外吸收光谱特征

3.人工充填处理宝玉石的鉴别

由两个或两个以上环氧基,并以脂肪族、脂环族或芳香族等官能团为骨架,通过与固化剂反应生成三维网状结构的聚合物类的环氧树脂,多以充填物的形式,广泛应用在人工充填处理翡翠、绿松石及祖母绿等宝玉石中。环氧树脂的种类很多,并且新品种仍不断出现。常见品种为环氧化聚烯烃、过醋酸环氧树脂、环氧烯烃聚合物、环氧氯丙烷树脂、双酚A树脂、环氧氯丙烷-双酚A缩聚物、双环氧氯丙烷树脂等。由图2-2-16可以看出,与蜡质物的红外吸收光谱表征明显不同的是,在充填处理翡翠中,环氧树脂中由苯环伸缩振动致红外吸收弱谱带位3028cm-1处(图中蓝圈处);与之对应由vas(CH2)不对称伸缩振动致红外吸收谱带位2922cm-1处,而vs(CH2)对称伸缩振动致红外吸收锐谱带则位2850cm-1处(图中红圈处)。

利用镜反射附件对底部封镶的天然翡翠饰品(如铁龙生)进行红外反射光谱测试时,要注意排除粘结在贵金属底托上的胶质物的干扰,因为贵金属底托起到背衬镜的作用,由此反射回的红外光一并穿透胶质物和未处理翡翠样品,有时易显示充填处理翡翠的红外吸收光谱特征。

图2-2-19为充填处理绿松石的红外吸收光谱。官能团区内,除绿松石中羟基、水分子伸缩振动致红外吸收谱带外,在2930cm-1、2857cm-1处显示由外来高分子聚合物中vas(CH2)、vs(CH2)的不对称和对称伸缩振动,其苯环伸缩振动致红外谱带多被v(M—OH)吸收谱带所包络。

4.相似宝石种类的鉴别

不同种属的宝石,在其晶体结构、分子配位基结构及化学成分上存在一定的差异,依据各类宝石特征的红外吸收光谱有助于鉴别之。日常检测过程中,检验人员时常会遇到一些不透明或表面抛光较差的翡翠及其相似玉石的鉴别难题,而红外反射光谱则提供了一个快速无损的测试手段。利用红外反射光谱指纹区内硬玉矿物中Si—Onb伸缩振动和Si—Obr—Si及O—Si—O弯曲振动致红外吸收谱带(经K-K变换)的波数位置及位移、谱形及谱带强度、谱带分裂状态等特征,极易将它们区分开(见图2-2-20)。

图2-2-19 绿松石与充填处理绿松石的红外吸收光谱(经K-K转换)

图2-2-20 天然翡翠与仿制品的红外吸收光谱(经K-K转换)

5.仿古玉的红外吸收光谱

一些仿古玉器在制作过程中,常采用诸如强酸(如HF酸)腐蚀或高温烘烤等方法进行老化做旧处理。经上述方法处理的玉器表面或呈白(渣)化、或酸蚀残化(斑)、或呈牛毛网纹状,对其玉质的正确鉴别往往带来一定的难度。利用“漫反射红外附件”有助于对这类老化做旧处理玉器进行鉴别。图2-2-21显示,由指纹区内Si—O、Si—O—Si的伸缩振动和弯曲振动致红外吸收谱带,足以证实该玉器的主矿物成分为透闪石(标识为软玉)。

图2-2-21 仿古玉制品的红外吸收光谱(经K-K转换)

最近要买一台红外光谱仪,看了仪器的配置指标,其中的P-P指标一项是:优于8.68*10-6Abs,谁能告诉我

信噪比(signal-to-noise ratio,简记为SNR ),顾名思义,就是信号值与噪声值的比,这一比值当然是越高越好。可是,翻遍《GB/T 21186-2007 傅立叶变换红外光谱仪》,《GB/T 6040-2002 红外光谱分析方法通则》(见红外光谱相关标准与检定规程大合集)以及其他的一些行业性、地方性的检定规程(国家级的傅里叶变换红外光谱仪检定规程至今还未出台),甚至中国药典,愣是找不到关于信噪比的只言片语的定义。信噪比指标对红外仪器性能的评判很重要,怎么会找不找呢?且慢,注意标准中屡屡提到的“基线噪声”(100%T线噪声)XXXX:1或1:XXXX,还往往标了P-P或RMS,这不就是我们熟悉的信噪比的表示方法吗?哈哈,总算找到你了。

艰难的看过标准上的描述(没办法,中国国标写的水平就是高!?),为了各位同学能够顺利读懂,我将它写为白话现代汉语版:

红外信噪比,是通过基线(100%T线)噪声来表征。也就是,在样品室中不放样品的情况下(空光路),测得一条假定理想的100%T透射光谱。信号,当然就是100%T了,如果没有噪声,那么这条光谱将是一条严格的纵坐标为100%T的直线,但是,实际情况是噪声总是存在的,这就使得这条光谱的各个波数点上的值不见得一定是100%T,可能高一些(比如100.1%T),也可能低一些(比如99.9%T)。P-P(峰-峰值)噪声的意思就是说刚才测得的那条光谱在某一段波数区间内(比如2200~2100cm-1)的最大值与最小值之差,比如说是100.1%T-99.9%T=0.2%T。前面说了,信号是假定为100%T,那么,根据信噪比的定义,信号值/噪声值,比如100%T/0.2%T=500(注意此处单位相消,也就是说,信噪比用信号噪声比值表示的话,是一个无量纲的数)。此时,我们可以说,这台红外光谱仪的信噪比是500:1。换句话说,我们知道了P-P(峰-峰值)噪声,我们也就自然知道了 P-P值信噪比;同理,我们知道了P-P值信噪比,比如500:1,那么我们很自然的也能利用噪声=信号/信噪比,即100%T/500=0.2%T,得到P-P噪声值的大小为0.2%T。

有人说,为了避免小概率事件的发生(此君是彩票迷,鉴定完毕!),噪声值应该用更具代表性和统计性的 RMS(均方根值)噪声来表示。那啥是RMS呢?我不得不祭出万恶的数学公式(霍金一部《时间简史》,只用了一个公式。我这个小小的原创这么早就出公式了。我不如霍金。。。)

设{Y1, Y2, Y3, …YN}为给定波数区间内N个连续波数点对应的纵坐标值(按照前述条件下,为一系列%T透过率值),则这些值的均值为:

均方根(root mean square,简记为RMS)偏差为:

如果不用公式,通俗地讲,均方根值就是一组数的平方的平均值的平方根;均方根偏差就是一组数与这组数均值之差的平方的平均值的平方根。所以,你瞧,我早早放弃了只用文字叙述,还是看看万恶的公式吧。显然,用上式求得的一条光谱在某波数(横坐标)区间内全部N个数据点纵坐标值的均方根偏差就作为了RMS噪声的度量。

一般对红外光谱来讲,P-P(峰-峰值)噪声会比RMS(均方根值)噪声大5倍左右,换句话说,RMS噪声的绝对数值更小,换算成信噪比时就更大,所以你发现用RMS值表示的信噪比往往看起来都很漂亮也就不奇怪了,因为它比P-P值表示的信噪比大了5倍(而且,显然参与运算的波数点越多,这一倍数还会增加)。

上面的“基线噪声”都是用了100%T基线,对应的是透射光谱的透过率表示形式;国际上越来越多的地方采用透射光谱的吸光度表示形式,此时的“基线”自然变成了0A基线。该“零基线”上的噪声单位,显然也就变成了A(吸光度单位,有时写做AU)。此时,计算P- P噪声和RMS噪声的方法与前面完全一样。但是,因为这些基线都是在样品室中不放样品的情况下(空光路)测得的,所以此时的信号应该是0A,如果直接计算信噪比的话,0/噪声=0,显然得不到明确的有意义数值。所以有很多同学这个地方就会糊涂了,由吸光度表示的基线噪声值,怎么得到信噪比?在此,zwyu 独家奉献推导过程(呵呵,反正市面上所有的资料里都没写,可能觉得太简单了吧。):

前面讲到,因为测量吸光度基线噪声时,假定的信号就是 0A(相当于没有信号),导致所有的计算归零。那么,绕开这一“归零窘境”的关键就是不用0A,而采用等效的100%T,因为前面用100%T基线噪声时计算信噪比已经证明是行得通的。所以,要做的工作就是将0A基线时的噪声等效为100%T基线时的噪声。由吸光度与透射率之间的转换关系:

设此时信号为1(即100%),考虑到将A坐标下的噪声A-0转换到%T坐标下的噪声1-T(为简化起见,将100%记为1,T则不再乘100),则根据信噪比SNR的定义,

这里的A就是0A基线下给出的基线噪声值(如果你怕将它和吸光度单位A混淆,请自行将公式中的变量A换为任意字母代替)。后面我会结合实例,验证我这一推导公式。显然A值越小,得到的信噪比越大,也就是说基线噪声值越小越好,这也与我们的认知相一致。

看罢这粉墨登场的诸多款红外光谱仪和它们的参数,我不知道诸位同学晕了吗?反正,如本文开头所述,玩了一辈子红外光谱的翁老爷子晕了。。。

老爷子之所以会晕的原因,不是他老人家红外经验少,更不是看的不认真,而是——各个标准之间,各个红外厂商的宣传资料之间,对红外信噪比实际测量时的诸多具体参数设置,根本不一致(用翁老爷子的原话就是“测定的条件不相同”)。或许,“因编者水平有限,难免会出现一些错误和疏漏”;或许,本来就是有人希望搞出这种不一致来以混淆视听;或许,家家有本难念的经。。。总之,苦了各位同学了。

先抛开这些让人纠结的具体参数,只看最终的结果。我们很容易发现,红外厂商之间最通用的信噪比表示方法一般有两种:5S(秒钟)P-P值信噪比和1Min(分钟)P-P值信噪比,但也有只给出了5S P-P值信噪比(如Varian)或只给出了1Min P-P值信噪比(如Shimadzu)的例外。为了统一起见,需要知道5S和1Min P-P值信噪比之间的换算关系。

在这里,提前谈一下扫描时间(在实际参数设置时,更直接的说,是扫描次数)这一参数对红外信噪比的影响。因为测量红外光谱时,检测器噪声占了总噪声的主要部分,而检测器噪声又与信号水平不成正比,或者说是噪声是随机的且与信号电平无关。那么,我们很容易想到通过多次测量求均值的办法来提高信噪比。而从数学上可以证明,n次测量平均的结果是信噪比可以提高到1次测量的倍。比如,4次叠加平均信噪比提高2倍,16次叠加平均信噪比提高4倍,32次叠加平均信噪比提高5.6倍,64次叠加平均信噪比提高8倍,128次叠加平均信噪比提高11.3倍。。。我们一般在使用红外光谱仪(FTIR)进行测量时,常选的叠加平均次数是16或32,这也是因为此时能达到最经济的效能。次数过少,信噪比提高的有限;次数过多,测量时间会很长,反而得不偿失。而且注意这里说的是FTIR,对于光栅红外来讲,扫一次全谱甚至需要几到几十分钟的时间,现代的实验人员不会疯狂到叠加平均多次从而花掉一天的时间来得到一张光谱。而对FTIR来说,扫一次全谱花掉的时间只有1S左右,完全可以多次扫描叠加平均来有效的提高信噪比。那么,问题来了,1Min扫描相比5S扫描,多扫了多少次呢?或者说,1Min扫描,红外光谱仪内部叠加扫描了多少次,5S扫描,又是叠加多少次呢?幸运的是,前述各厂家给出信噪比指标的时候,都使用的是分辨率为4cm-1时的数据,也就是说,此时扫描时间和扫描次数基本上成一个简单的正比关系。5S:60S=1:12,可以简单的认为,1Min扫描的次数是5S扫描次数的12倍,套用前面给出的关系,也就是说,预期信噪比可以提高3.5倍。让我们来看一下这两个信噪比数据都给出了的厂家提供的数据:

Thermo/Nicolet公司的iS10:1Min P-P值信噪比:5S P-P值信噪比=35000:10000=3.5,完全符合我们的推论。

PE公司的Spectrum 100 :1Min P-P值信噪比:5S P-P值信噪比=36000:10500=3.4,基本符合。

Bruker 公司的TENSOR 37:1Min P-P值信噪比:5S P-P值信噪比=45000:8000=5.6,与我们的预期值偏差较大。我们注意到这两个数据Bruker公司将它标为了“可达”,而不是“最少”(标为“最少”的,只有5S P-P值信噪比=6000:1这一个数据)。换句话说,1Min扫描信噪比能够比5S扫描提高5.6倍,这只是可能发生的最好情况,而不是一定保证的数据 。由于我们前面给出的“n次测量平均的结果是信噪比可以提高到1次测量的倍” 这一结论已经是理想情况下的数值了,实际情况可能还达不到这一效果,那么,Bruker公司的提高5.6倍,远超理论上限值3.5倍的数据,又是怎么来的呢?这就又不得不提到一个扫描速度的问题。前面说过,现代的FTIR扫一次全谱(4000~400cm-1)花掉的时间只有1S左右,当然,它有“左”也有“右”了。如果扫描一次正好需要1S时间,那么,5S内,光谱仪共扫了5次,1Min内,共扫了60次,这就是我们前面用到的数据。但是,如果1次扫描需要花费的时间不止1S呢?比如说,是1.5S,那么,光谱仪在5S内的完整扫描次数只有3次(还有1次未完成,不参与叠加平均),而在1Min时间内能够正好完成40次扫描,理论上1Min扫描信噪比能提高3.7倍,比之前的3.5倍高了一些。更极端一点,假定完成1次扫描恰好需要2.51S,则5S内只能完成1次完整扫描(剩下的2.49S白忙乎了),而1Min内能够完成23次完整扫描,理论上信噪比能提高4.8倍,比之前估计的3.5倍又提高了不少。但这与5.6倍还是有一定距离。到这儿,zwyu也解释不下去了。但好在Bruker公司的宣传资料也很明显的提示我们了,5.6倍的提高只是“最好情况”,所以我们在这也不必再深究“为什么”了,不过请正在使用TENSOR 37或27的朋友,告诉我一下在光谱分辨率为4cm-1时,使用DTGS检测器,其它参数全部使用默认设置,扫描4000~400cm-1全谱一次需要多长时间?连续扫描1Min又能扫描完成几次?谢谢!

好了,不考虑Bruker数据的特殊情况,采用3.5倍这一比较正常的换算系数,我们可以很容易的得知:

Agilent/Varian公司的640-IR:5S P-P值信噪比=6000,1Min P-P值信噪比=6000*3.5=21000

Shimadzu公司的IRPrestige-21:5S P-P值信噪比=40000/3.5=11000,1Min P-P值信噪比=40000

顺便看一下国产的FTIR

北京瑞利的WQF-510:5S P-P值信噪比=3000/3.5=850,1Min P-P值信噪比=3000(我看到的资料中只是给出了32次扫描的RMS值信噪比为15000:1,前面提过,RMS值信噪比一般是P-P值信噪比的5 倍,所以32次扫描的 P-P值信噪比为3000:1;又因为据我观察,正常扫描情况,WQF-510用4cm-1分辨率扫完4000~400cm-1全谱1次的时间绝对不止 1S,所以我们可以暂时认为其32次扫描时间接近于1Min)

天津港东的FTIR-650:5S P-P值信噪比=15000/3.5=4200,1Min P-P值信噪比=15000(我看到的资料中只写有P-P值信噪比为15000:1,而没有注明时间;写了时间的那份资料里的信噪比数值又让我崩溃且没标明是P-P值。所以姑且认为这里的扫描时间是1Min,大家存疑也就是了。当然,也十分欢迎国产仪器的厂方专家前来指正)

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

红外光谱仪主要检测什么

有机物的特征官能团,分子结构和化学组成。

红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

扩展资料:

应用

应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。

分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

参考资料:百度百科-红外光谱仪

ftir主要是分析什么

ftir主要是分析光谱。

FTIR主要由迈克尔逊干涉仪和计算机两部分组成。由红外光源S发出的红外光经准直为平行红外光束进入干涉系统,经干涉仪调整制后得到一束干涉光。

干涉光通过样品Sa,获得含有光谱信息的干涉信号到达探测器D上,由D将干涉信号变为电信号。此处的干涉信号是一时间函数,即由干涉信号绘出的干涉图,其横坐标是动镜移动时间或动镜移动距离。

这种干涉图经过A/D转换器送入计算机,由计算机进行傅立叶变换的快速计算,即可获得以波数为横坐标的红外光谱图。然后通过D/A转换器送入绘图仪而绘出人们十分熟悉的标准红外吸收光谱图。

扩展资料

红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。

当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。

含n个原子的分子应有3n-6个简正振动方式;如果是线性分子,只有3n-5个简正振动方式。以非线性三原子分子为例,它的简正振动方式只有三种。

在v1和v3振动中,只是化学键的伸长和缩短,称为伸缩振动,而v2的振动方式改变了分子中化学键间的夹角称为变角振动,它们是分子振动的主要方式。

分子振动的能量与红外射线的光量子能量正好对应,因此,当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子的振动,而产生红外吸收光谱。

傅里叶变换红外光谱仪:

它是非色散型的,核心部分是一台双光束干涉仪(图4中虚线框内所示),常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱B(v):

式中I(x)为干涉信号;v为波数;x为两束光的光程差。

傅里叶变换光谱仪的主要优点是:

①多通道测量使信噪比提高;

②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;

③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米;

④增加动镜移动距离就可使分辨本领提高;

⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。

参考资料:百度百科-FTIR(傅立叶变换红外吸收光谱仪)

参考资料:百度百科-红外光谱

傅立叶变换红外光谱仪国标的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于傅立叶变换红外光谱仪用途、傅立叶变换红外光谱仪国标的信息别忘了在本站进行查找喔。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624