资讯

承天示优,优品至上。

傅里叶红外变换光谱吸收(傅里叶变换红外光谱仪使用)

承天示优官方账号 2023-02-25 资讯 422 views 0

今天的文章给大伙介绍下傅里叶红外变换光谱吸收,和傅里叶变换红外光谱仪使用相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

Fourier transform infrared spectroscopy是什么意思

Fourier transform infrared spectroscopy

傅立叶转换红外光谱学;傅里叶变换红外分光镜;傅里叶变换红外光谱

傅里叶转换红外光谱 (FTIR) 是一种用来获得吸收,射出,光电导性或固体, 液体或气体的拉曼散射的红外光光谱技术。傅立叶转换红外光谱仪同时收集一个大范围范围内的光谱数据。这给予了在小范围波长内测量强度的色散光谱仪一个显著的优势。FTIR已经能够做出色散型红外光谱,但使用的并不普遍(除了有时候在近红外),开启了红外光谱新的应用。傅立叶转换红外光谱仪是源自于傅立叶转换(一种数学过程),需要将原始数据转换成实际的光谱。对于这种技术的其他运用,请参阅傅里叶转换红外光谱。

中傅里叶变换红外光谱和拉曼光谱分析仪一样吗

傅里叶变换红外光谱:

我们得到的谱图是由原始的干涉信号经过傅里叶变换后的图。

拉曼光谱:

拉曼光谱和红外光谱分别是由拉曼光谱仪和红外光谱光谱仪检测得到的,这两种仪器的工作原理不同。

拉曼光谱和红外光谱分都可以提供分子的结构信息。

1.傅里叶变换红外(FT-IR)通过迈克尔逊干涉仪将物质的吸收光谱信号转换成时间域信号,在通过.傅里叶数学变换转换成我们通常熟悉的谱图信号.拉曼光谱是测量漫反射信号.这是他们仪器原理上的区别.

2.在IR中,物质的偶极距必须发生变化,才能产生信号,而在拉曼中,必须极化率发生变化.

3.两者是互补的,有些分子结构较对称的(比如二氧化碳是非极性分子,在IR中无信号或很弱)但在拉曼中由于其电子云密度大,很易极化,极化率大有很强的信号.这就互补了,他们测的都是分子骨架的振动-转动信息.

5. 傅里叶变换红外光谱仪的基本结构,有哪些特点?简述工作原理?

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。

红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于分子的结构特征。这就是红外光谱测定化合物结构的理论依据。

红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。

傅里叶红外光谱仪由光源、迈克尔逊干涉仪、样品池、检测器和计算机组成,由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。当上述干涉光通过样品时某一些波长的光被样品吸收,成为含有样品信息的干涉光,由计算机采集得到样品干涉图,经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

今天的傅里叶红外变换光谱吸收有关的说明就先聊到这里啦,想指导更多有关于傅里叶变换红外光谱仪使用的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624