行业动态

承天示优,优品至上。

厦门温室气体多组分检测(温室气体检测标准)

承天示优官方账号 2023-03-01 行业动态 510 views 0

又到了我们给大家分享有关厦门温室气体多组分检测的时候了,同时我们也会对与之对应的温室气体检测标准进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

甲烷检测中采用红外和催化传感器哪种更好?

甲烷探测器对监测各种应用的有效性和安全性至关重要。本文阐述了为什么红外(IR)传感器是探测甲烷的首选。就在30年前,矿工们只能靠使用金丝雀来警告他们矿井中存在高浓度的甲烷或一氧化碳。幸运的是,现在传感技术已经发展起来了,并且气体探测可选择的方法也越来越多。气体探测器能够量化和探测环境和工业气体,如甲烷、一氧化碳和二氧化碳,因而它们在确保广泛的应用和生产过程的有效性和安全性方面发挥着关键作用。

图1 甲烷分子示意图

气体探测器广泛用于监测甲烷浓度和泄漏探测

天然气主要由甲烷组成,被广泛用于发电。甲烷是一种温室气体,具有高度易燃性,可以与空气形成爆炸性混合物。在天然气开采、运输和发电过程中探测泄漏是至关重要的,因为甲烷泄漏可能导致破坏性结果。在化学工业中,甲醇、合成气、乙酸和其他商用化学品的生产,都依赖于甲烷气体传感器来确认生产过程是否有效且安全地运行。甲烷可能影响人的健康和环境,所以测量大气中的甲烷水平来监测环境条件的变化也变得越来越重要。

商用气体探测技术

市场上有各种各样的甲烷气体探测器和传感器,它们各有优缺点:• 电化学传感器电化学传感器通过甲烷与电极的腐蚀或氧化反应产生电流,该电流的大小可用于确定气体浓度。由于电极是暴露在大气中的,可能发生化学污染和腐蚀,因此电化学传感器需要经常更换。• 氢火焰离子化探测器(FID)FID使用氢火焰来电离甲烷气体,电离的气体会产生电流,计算该电流可以确定气体浓度。虽然FID准确且快速,但它们需要明火、氢气源和纯净空气供应,这意味着FID并不适合某些应用。• 催化传感器催化传感器通过催化氧气和甲烷的反应,产生的热量会引起传感器中的电阻变化,由此可以测量甲烷浓度。虽然催化传感器坚固且廉价,但运行时对氧气的需求是必不可少的,并且它们易受污染、中毒和烧结。因此需要频繁地校准和更换。• 半导体传感器工作原理与催化传感器类似,半导体传感器与甲烷反应,引起电阻变化,以此来计算气体浓度。与催化传感器一样,半导体传感器也易受污染和中毒。• 红外传感器红外传感器利用红外光束探测和测量大气中存在的任何气体。虽然红外传感器比其他传感器贵一点,但它们持久耐用。因此,红外传感器已成为探测各种气体的主要技术。

红外传感器是甲烷探测的首选技术

非分散红外(NDIR)传感器通常由IR源、IR探测器、采样腔和滤光器组成。通常,包含参考气体的第二个腔与采样腔平行运行。IR光透过大气采样腔施加到探测器上。采样腔中的甲烷气体会吸收特定波长的IR光。探测器前面的滤光器会阻挡掉非所选波长的光,因此探测器仅测量指定波长的衰减变化,(利用气体浓度与吸收强度的关系)可确定存在的甲烷浓度。与其它气体探测技术相比,红外传感器具有许多优点:它们具有内置的故障安全系统,这是因为它们可以用小信号代表高浓度气体,而在其他传感器中,小信号或无信号意味着零或低浓度。如果探测器发生故障或失灵,则不会记录IR辐射,这将触发警报。NDIR传感器也比需要燃烧混合气体的方法更精确。

在某些情况下,NDIR传感器甚至允许同时存在两种可燃气体时,可以检测其中一种可燃气体组分。尽管当用户无法确定气体混合物是否易燃时,的确存在一定限制。与其它可用类型的传感器不同,IR探测器不与甲烷气体相互作用。大气中的气体和任何污染物仅与光束相互作用。因此,探测器可密封以防止损坏,因而具有较长的使用寿命。红外探测器和其它传感器一样,也可提供准确的结果和快速的响应时间。半导体、催化、电化学传感器和FID都要求目标气体的浓度必须低于爆炸浓度的下限,但是IR传感器则可以实现0~100%气体浓度的精确计算。而且它们不需要外部气体或氧气来运行。红外传感器也存在一些缺点,它们可能会受到压力和温度调节的不利影响。尽管如此,先进的红外传感器现在可以进行压力和温度补偿,这意味着这种耐用且可靠的传感器劣势已经最小化。IR传感器现在被选为甲烷和其他工业和环境相关气体的探测方法。

Edinburgh Sensors公司Gascard NG实现可靠的气体探测

图2 Edinburgh Sensors的Gascard NG(Edinburgh Sensors是高品质气体传感解决方案的领先供应商,提供全系列的NDIR传感器,可用于二氧化碳、一氧化碳和甲烷的可靠探测)据麦姆斯咨询介绍,Gascard NG是种可被原始设备制造商(OEM)简单地集成到各种系统中的气体传感器,能够可靠且准确地计算二氧化碳、一氧化碳和甲烷气体浓度。一些红外传感器会受到压力或温度的影响,但Gascard NG采用了强大的压力和温度校正功能,以确保在各种环境中获得准确的结果。Gascard NG可用于各种研究、环境和工业应用中的甲烷探测,包括污染监测、农业研究、化学加工等等。

二氧化碳是空气污染物吗

二氧化碳不是空气污染物。

二氧化碳不是空气污染物质,只要大气中原本有的物质,并且大量存在的都不是污染物,这就是判断依据,空气污染物定义通常以气态形式进入近地面或低层大气环境的外来物质。

如氮氧化物,硫氧化物和碳氧化物以及飘尘,悬浮颗粒等,有时还包括甲醛,氢以及各种有机溶剂,其对生态系统具有不良效应。

二氧化碳,一种碳氧化合物,化学式为C02,化学式量为44.0095,常温常压下是一种无色无味或无色无嗅而略有酸味的气体,也是一种常见的温室气体,还是空气的组分之一。

二氧化碳的主要应用:

高纯二氧化碳主要用于电子工业,医学研究及临床诊断,二氧化碳激光器,检测仪器的校正气及配制其它特种混合气,在聚乙烯聚合反应中则用作调节剂,固态二氧化碳广泛用于冷藏奶制品,肉类,冷冻食品和其它转运中易腐败的食品。

在许多工业加工中作为冷冻剂,例如粉碎热敏材料,橡胶磨光,金属冷处理,机械零件的收缩装配,真空冷阱等,气态二氧化碳用于碳化软饮料,水处理工艺的pH控制,化学加工,食品保存,化学和食品加工过程的惰性保护,焊接气体,植物生长刺激剂。

在铸造中用于硬化模和芯子及用于气动器件,还应用于杀菌气的稀释剂(即用氧化乙烯和二氧化碳的混台气作为杀菌、杀虫剂、熏蒸剂,广泛应用于医疗器具、包装材料、衣类、毛皮、被褥等的杀菌、骨粉消毒、仓库、工厂、文物、书籍的熏蒸)。

煤层气注气开发数值模拟研究进展

冯其红 石洪福 张先敏

(中国石油大学(华东)石油工程学院,山东青岛266555)

摘 要:当前制约我国煤层气发展的瓶颈是单井产量低、经济效益差,因此提高煤层气单井产量是我国 煤层气开发亟须解决的问题。注气增产法是一种提高煤层气采收率的增产技术,其原理是通过向煤层中注入 其他气体(CO2、N2或混合气体),与甲烷竞争吸附或降低甲烷有效分压,促进煤层甲烷的解吸。该技术可 以保证煤层的能量,有利于甲烷产出,可大幅度提高煤层气单井产量和采收率,延长煤层气田的开采期。本 文主要对注气开采煤层气增产机理、室内现场实验以及数值模拟等方面的国内外研究现状进行了综述,总结 了该领域目前面临的主要难点,展望了进一步深入研究的方向。

关键词:煤层气;注气;解吸;数值模拟

注气驱替煤层气具有减少温室气体排放和提高煤层气采收率的双赢效果。相比传统的储层压力衰竭法 开采,注入气体可以保持地层能量,延长煤层气井寿命,提高采收率[1],该技术还适用于开发深部低渗透 性松软煤层的煤层气。因此,气体驱替煤层气技术的相关研究受到世界主要发达国家的广泛重视。

1 注气驱替煤层气的机理

煤是一种孔隙高度发育的有机固体物质。气体在煤表面的吸附本质上是一种物理吸附,范德华力起 主要作用,不同气体在煤表面的吸附能力差异主要是分子间作用力的不同。Cunningham[2]和Parkash[3] 认为这种作用力与相同压力下各种吸附质的沸点有关,沸点越高,被吸附的能力越强,因此煤对气体的 吸附能力表现为:CO2 >CH4 >N2。降文萍等[4]则从量子化学的角度计算发现煤表面CO2的吸附势阱要 大于CH4,因此CO2的吸附能力强于CH4。Marco Mazzotti[5]研究发现吸附气体会导致煤岩膨胀且膨胀 量为CO2 >CH4 >N2,因此注入CO2驱替煤层气会导致渗透率明显降低。

后来,杨涛等[6]建议采用注入超临界CO2来开采煤层气,超临界CO2能以气体的身份与CH4进行 竞争吸附,同时还能以液相的性质在渗流通道内萃取出极性较低的碳氢化合物和类脂有机化合物,从而 增加了其孔隙度和渗透性。

N2的吸附能力比CH4弱[7],因此N2驱替煤层气的机理与CO2驱替不同(图1)。注入N2后可以 降低CH4的分压从而促进CH4的解吸,N2置换CH4后煤岩会收缩引起渗透率的上升,加拿大艾伯特省 Felm Big Vaney[8]试验区的单井注入试验已经证明了这一点。

图1 注CO2和N2驱替煤层气的原理示意图

总之,CO2驱替煤层气技术比较适合于高渗透、不可开采煤层,对于我国低渗透、可开采煤层有一 定的局限性。另外N2的成本比较低,提纯容易。因此,建议采用富含N2的混合气体驱替开采我国的 低渗透煤层气,一方面发挥了CO2的高驱替能力,另外一方面发挥了N2的增渗作用。

2 注气开采煤层气的试验

国内外开展了大量注气开采煤层气的室内以及现场试验。室内试验主要以气体的吸附/解吸、形变 和渗透率的测量为主,现场主要进行了CO2煤层埋存以及混合气体驱替煤层气的试验。

2.1 室内试验

煤对气体的吸附性大小主要取决于煤的岩石学组成、物理化学结构、煤阶、水分含量等自身因素,另外温度、压力也对煤岩的吸附性有较大的影响。针对煤对单组分气体的吸附,国内外的学者开展了大 量的深入研究[9~24]。

关于煤对多元混合气体的吸附,国内外专家学者[25~39]普遍认为多元气体吸附时,每种气体不 是独立吸附的,而是不同气体间存在着竞争吸附。二元气体的吸附等温线总是介于吸附能力强和吸 附能力弱的纯组分气体吸附等温线之间,混合体系中每一组分的吸附量都小于其单独在相同分压下 的吸附量。

室内的注气驱替实验的一般程序是:煤岩充分吸附CH4,然后注入其它气体,可以边注边抽,也可 以注入后待其它气体与甲烷充分竞争吸附后再抽,然后测试产出气体量和成分以及它们与注气压力、注 气速率等的关系。研究表明CO2/CH4的置换比高达1:7,N2/CH4可以达到1:4,产出气体中初期甲烷含 量几乎为100%,待注入气体突破后,甲烷含量明显降低[40,41]。

2.2 现场注气试验

美国、加拿大、日本、欧盟等先后进行了不同规模的注气驱替煤层气现场试验。1993年,美国的 BP Amoco公司在圣胡安盆地进行了世界上第一次注气(83%的N2和12%的CO2)提高采收率的相关 试验[42]。1995年,美国又在圣胡安盆地向Allison和Tiffany煤层进行纯CO2和纯N2注入试验[43]。为 了测试不同地质条件下ECBM技术的适用性,加拿大在Alberta[44]盆地进行了小规模的CO2-ECBM工 程,采收率得到明显提高。中国和加拿大也联合在沁水盆地南部的TL-003井也进行了CO2-ECBM的 微型先导性试验,测试数据显示注气后产气量明显上升,产水量有所下降[45,46]。除此之外,在日本在 北海道,欧盟在波兰也进行过类似的现场试验。

目前看来,几个国家的现场测试结果都比较令人满意,注入CO2后气井产量均有大幅增长,但是近 井周围的渗透率在注气后有所降低,随着排采过程又有一定程度的恢复。一方面是因为CO2的扩散趋 于均匀,不再像注入初期那样聚集在井筒附近,另一方面是排采过程中储层压力降低,煤基质收缩导致 渗透率有所增大。

3 注气开采煤层气的数值模拟

注入气体和煤层甲烷在煤层中赋存运移规律是注气开采煤层气的理论基础。注气开采煤层气的 实质是一个注入气体与甲烷在煤层中竞争吸附、解吸,扩散,以及水、气多相渗流的过程。ECBM 过程中煤层气的运移是一个非常复杂的过程,包括煤层气及注入气体的竞争吸附、解吸、扩散以及 达西流动等。气体的吸附、解吸会使煤岩产生膨胀、收缩变形,从而引起煤岩的孔隙结构变化,进 而引起煤岩渗透系数的变化。煤岩的孔隙结构和渗透系数变化反过来又影响气体在煤岩中的赋存与 流动。因此,ECBM过程是一个多组分气相-水相-煤岩固相耦合的过程。由于该过程非常复杂,即使建立了完整的数学模型,其求解也相当困难,因此,目前国内外学者Ekrem Ozdemir[47~50],Julio Manik,Seto,吴嗣跃,孙可明[50~52]等在建立ECBM过程模型的时候一般都作了一些假设,忽 略某些因素,使求解变得简单。

常规煤层气模拟器一般可以模拟:(1)双重孔隙系统;(2)单组分气体在孔隙系统的吸附和扩散; (3)裂隙系统达西渗流;(4)吸附气体解吸产生的煤岩收缩。模拟ECBM过程还必须考虑:(1)CO2吸附引 起的煤岩膨胀;(2)混合气体吸附;(3)混合气体扩散;(4)由于注入气体和煤层和之间的温差造成的非等 温吸附等。

针对ECBM过程的这些特点,目前,国内外广泛使用的ECBM模拟器主要包括商业的模拟器,如: GEM、ECLIPSE、SIMED11、COMET2,METSIM2和非商业的模拟器,如:GCOMP、TOUGH2、CBM - SIM、IPARS-CO2等。David H.-S.Law[53]对注气驱替煤层气数值模拟做了深入的研究,详细比较了上 述几种模拟器的模拟效果,各自的功能特点见表1。

表1 目前主要的ECBM软件的功能特点

4 总结

总结国内外的研究成果,注气提高煤层气采收率的可行性和原理已经得到了充分的论证,然而,前人的研究工作多处于纯理论研究阶段,缺乏理论和实践的结合,而且存在如下可进一步研究的 问题:

(1)深入研究多组分气体在煤样中的竞争吸附/解吸效应,确定相对吸附(解吸)速率、置换速率 与吸附平衡压力、各组分气体分压、时间的关系。

(2)通过注气驱替渗流实验,研究煤层气采收率与注气方式、注气成分、注气周期、注气压力之 间的关系。

(3)研究煤变质程度及煤岩组分对注气效果的影响。

(4)开展高温、高压下的煤岩储层注气效果评价。

(5)采用格子Boltzmann方法[54]和分子动力学方法(MD)[55]进行注气开发的微观模拟。

参考文献

[1]Puri R.,Yee D.Enhanced coalbed methane recovery[C].SPE20732 presented at the 65th Annual Technical Conference of the Society of Petroleum Engineers,New Orleans,1990:193-202.

[2]Cunningham R.E.Diffuse in gas and porous media[M].New York:Plenum Press,1980:153-154.

[3]Parksh S.,Chanrabarrtly S.K.Porosity of coal from Alberta Planes[J].International Journal of Coal Geology,1986,6: 55-70

[4]降文萍,崔永君,张群.煤表面CH4,CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237~240.

[5]Mazzotti M.,Puri R.,Storti G.Enhanced coalbed methane recovery[J].The Journal of Supercritical Fluids,2009,47: 619-627.

[6]杨涛.超临界CO2抽提对煤的改性实验研究[D].太原理工大学,2010:38~41.

[7]方志明.混合气体驱替煤层气技术的机理及试验研究[D].中国科学院武汉岩土所,2010,20~30.

[8]Wong S,Law D,Deng X,etal.Enhanced coalbed methane and CO2 storage in an thracitic coals-Micro-pilot test at South Qinshui Shanxi China[J].International Journal of Greenhouse Gas Control,2007,1(2):215-222.

[9]Levy J.H.,Day S.J.,Killingley J.S.Methane capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,74:1-7.

[10]Bustin R.M.,Clarkson C.Geological controls on coalbed methane reservoir capacity and gas Content[J].Int.J.of Coal Geol.,1998,38(1-2):3-26.

[11]Lamberson M.N.,Bustin R.M.Coalbed methane characteristics of gates formation coals,Northeastern British Columbia: effect of mineral composition[J].AAPG,1993,77:2062-2076.

[12]Clark C.R.,Busti B.M..Binary gas adsorption/ desorption isotherms:effects of moisture and coal composition upon carbon dioxide selectivity over methane[J].Int.J.of Coal Geol.,2000,42:241-271.

[13]Jouber t J.I.,Grein C.T.Sorption of methane in moist coal[J].Fuel,1973,52:181-185.

[14]Levine J.R.,Johnson P.High pressure microbalance sorption studies[J].International coalbed methane symposium,1993:187-195.

[15]Castello D.L.Advances in the study of methane storage in a porous carbonaceous materials[J].Fuel,2002,81:1777- 1803.

[16]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566~570.

[17]崔永君,张群,张庆玲等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].煤田地质与勘探,2005,25(1):61~65.

[18]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618~622.

[19]郭立稳,王月红,张九零.煤的变质程度与煤层吸附CO影响的实验研究[J].辽宁工程技术大学学报,2007,26(2):165~168.

[20]郭立稳,肖藏岩,刘永新.煤孔隙结构对煤层中CO扩散的影响[J].中国矿业大学学报,2007,36(5):636~640.

[21]牛国庆,颜爱华,刘明举.煤吸附和解吸瓦斯过程中温度变化研究[J].煤炭科学技术,2003,31(4):47~49.

[22]钟玲文,郑玉柱等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].中国矿业大学学报,2002,27(6):581~585.

[23]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报2005,34(4):427~432.

[24]马东民,张遂安等.煤层气解吸的温度效应[J].煤田地质与勘探,2011,3(1):20~23.

[25]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618~622.

[26]于洪观,范维唐,孙茂远等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化,2005,28(1): 43~47.

[27]崔永君,张群,张庆玲等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].煤田地质与勘探,2005,25(1):61~65.

[28]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607~616.

[29]张庆玲,张群,崔永君等.煤对多组分气体吸附特性研究[J].煤田地质与勘探,2005,25(1):57~60.

[30]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1): 18~20.

[31]Bush,B.M.,Krooss Y.,Gensterblum F.,et al.High-Pressure adsorption of methane,carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behavior.[J].Journal of Geochemical Exploration,2003,(78- 79):671-674.

[32]Mazumder S.,Hemert P.V.,Busch A.,et al.Flue gas and pure CO2 sorption properties of coal:A comparative study[J].International Journal of Coal Geology,2006,67:267-279.

[33]Fitzgerald J.E.,Pan Z.,Sudibandriyo M.,et al.Adsorption of methane,nitrogen carbon dioxide and their mixtures on wet Tiffany coal[J].Fuel,2005,84:2351-2363.

[34]Hasan Shojaei,Kristian Jessen.Application of potential theory to modeling of ECBM recovery[C].SPE144612 prepsented at the SPE Western North American Regional Meeting,Alaska,USA,2011:7-11.

[35]Gruszkiewiez M.S.,Naney M.T.,Blencoe J.G.,et al.Adsorption kinetics of CO2,CH4,and their equimolar mixture on coal from the Black Warrior Basin,West-Central Alabama.[J].International Journal of Coal Geology,2009,77:23-33.

[36]Chaback,J.J.,Morgan,et al.Sorption irreversibilities and mixture compositional behavior during enhanced coalbed methane recovery processes[C].SPE 35622-MS,SPE Gas Technology Symposium,28 April-1 May 1996,Calgary,Alberta,Canada.

[37]Harpalani.Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration[J].Energy Fuels,2006,20(4):1591-1599.

[38]Ekrem Ozdemir,Badie I.Morsi,Karl Schroeder.CO2 adsorption capacity of Argonne premium coals[J].Fuel,2004,83:1085-1094.

[39]J-S.BAE,S.BHATIA,P.MASSAROTTO et al.Open hysteresis phenomena in high-pressure sorption of methane and carbon dioxide on coal[C].Proceedings of the 2008 Asia Pacific CBM Symposium,Brisbane,Australia,2008.

[40]杨宏民.井下注气驱替煤层甲烷的机理及规律研究.[D]河南理工大学.2010,85~100.

[41]吴迪.CO2驱替煤层瓦斯的机理与实验研究.[D]太原理工大学2010,50-54.

[42]W.Lin,G.-Q.Tang,A.R.Kovseck.Sorption-induced Permeability change of coal during Gas -injection processes[J].SPE Reservoir Evaluation &Engineering.2008,11(4):792-802.

[43]Tom Tang,Wenjuan Lin,Tanmay Chaturvedi,et al.A laboratory investigation of CO2 injection for enhanced methane recovery from coalbeds[C].Presentations from the 5th International Forum on Geologic Sequestration of CO2:in Deep,Unmineable Coalbeds,2006.

[44]White C M,Smith D H,Jones K L,et al.Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: a review energy fuels[J].Energy&Fuels,2005,19(3):659-724.

[45]Reeves,S.R.The Coal-Seq Project:Key Results From Field,Laboratory,and Modeling Studies[C]The 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7),Vancouver,BC,Canada,September 5-9,2004.

[46]Gunter W.D.,Mayor M.J.,Robinson J.R.CO2 storage and enhanced methane production:field testing at the Fenn Big Valley,Alberta,Canada[C].The 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7).September 5-9,2004.

[47]叶建平,冯三利,范志强等.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报,2007,28(4):77-80.

[48]Ekrem Ozdemir.Chemistry of the adsorption of carbon dioxide by Argonne premium coals and a model to simulate CO2 sequestration in coal seams[D].University of Pittsburg,2004.

[49]Ekrem Ozdemir.Modeling of coalbed methane(CBM)production and CO2 sequestration in coal seams[J].International Journal of Coal Geology,2009,77:145-152.

[50]Julio Manik.Compositional modeling of enhanced coalbed methane recovery[D].The Pennsylvania State University,1999.

[51]C.J.Seto.,K.Jessen.F.M.Orr Jr.A four-component,two-phase flow model for CO2 Storage and enhanced coalbed methane recovery[J].SPEJ,2009,14(1):30-40.

[52]吴嗣跃,郑爱玲.注气驱替煤层气的三维多组分流动模型[J].天然气地球科学,2007,18(4):580~583.

[53]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学博士学位论文,2004.

[54]Law D.H.-S.,Vander Meer,L.G.H.,Gunter,W.D.Comparison of numerical simulators for greenhouse gas sequestration in coalbeds,part Ⅰ:pure carbon dioxide injection[C].paper SPE 75669 presented at the SPE gas technology symposium,Calgary,Alberta,Canada,2002.

[55]Akshay Gunde,Tayfun Babadagli,Sushanta K.Lattice-Boltzmann method to estimate relative permeabilities for matrix- fracture interaction in naturally fractured reservoirs[C].SPE138255 presented at the SPE Eastern Regional Meeting,Morgantown,West Virginia,USA,2010.

[56]Haixiang Hu,Xiaochun Li,Ning Wei.Small-molecule gas sorption and diffusion in coal:Molecular simulation[J].Energy,2010,35:2939-2944.

关于厦门温室气体多组分检测和温室气体检测标准的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624