资讯

承天示优,优品至上。

傅立叶红外光谱基团峰(傅里叶红外光谱法原理)

承天示优官方账号 2023-03-07 资讯 568 views 0

今天的文章给大伙介绍下傅立叶红外光谱基团峰,和傅里叶红外光谱法原理相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

傅里叶红外光谱仪的用处

前面的兄弟说得不错。我也说两句:,能否测到这个混合物中样品的各个成分比重?这个可以尝试,如果前期工作,如标样,曲线做好,红外光谱可以实现。能否测到混合物中各个元素占比?这个应该不能,因为红外光谱仪不能测出元素及元素含量,只能测出官能团、化学键等分子结构。

仅供参考。可以到哪个学校,找一个红外光谱测试一下(要找同样研究方向的,不同领域红外的应用也不同)。

不饱和醛酮红外光谱为什么有两个

醛和酮的红外光谱【摘要】红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系, 来对物质进行分析的, 红外光谱可以用吸收峰谱带的位置和峰的强度 加以表征。 测定未知物结构是红外光谱定性分析的一个重要用途。 根 据实验所测绘的红外光谱图的吸收峰位置、 强度和形状, 利用基团振 动频率与分子结构的关系, 来确定吸收带的归属, 确认分子中所含的 基团或键,并推断分子的结构。【关键字 】红外光谱法 吸收峰 共轭效应 诱导效应 氢键效应 傅里叶 红外光谱仪 【实验目的】1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外 光谱鉴别官能团,并根据官能团确定未知组分的主要结构;2.选择羧酸,醛和酮中的羰基吸收频率进行比较, 说明诱导效应, 共轭效应及氢键效应对羰基峰的影响,指出各个醛酮的主要谱带;3.了解仪器的基本结构及工作原理;4.了解红外光谱测定的样品制备方法;5.学会傅立叶变换红外光谱仪的使用。【实验原理 】羰基在 1850~1600 范围内出现强吸收峰,其位置相对较固定且强 度大,很容易识别。而羰基的伸缩振动收到样品的状态,相邻取代基团,共轭效应,氢键,环张力等因素的影响,其吸收带实际位置有所 差别。吸收峰的位置取决于化学键的强度和基团的折合质量。 由此我们 得到如下启示:1任何增强羰基键极性的效应都会降低碳氧键的力常数,使羰基 的伸缩振动峰向低波数移动。2任何降低羰基键极性的效应都会降低碳氧键的力常数,使羰基 的伸缩振动峰向高波数移动。3当羰基与其它基团形成共轭体系时,由于共轭效应的作用,使 得羰基键的电子云密度减小,从而降低碳氧键的力常数,使羰基 的伸缩振动峰向低波数移动。本实验用傅立叶变换红外光谱仪来测定相应的谱图。 其是由红外 光源、迈克尔逊( Michelson )干涉仪、检测器、计算机等系统组成。 光源发散的红外光经干涉仪处理后照射到样品上, 透射过样品的光信 号被检测器检测到后以干涉信号的形式传送到计算机, 由计算机进行 傅立叶变换的数学处理后得到样品红外光谱图。

【仪器及试剂】1、 仪器: 650 型傅里叶红外光谱仪、可拆式液体池、 KBr 盐片、 红外灯、玛瑙研钵。2、试剂:苯甲酸 ;苯甲醛;环己酮;滑石粉;溴化钾;无水乙醇检测器【实验步骤】1固体样品苯甲酸的红外光谱的测定(1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯 下研磨成细粉,再加入约150mg干燥的KBr 一起研磨至二者完全混 合均匀,颗粒粒度约为2阿以下。(2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压 式压片机用力加压约30s,制成透明试样薄片。(3)将试样薄片装在磁性样品架上,放入傅里叶红外光谱仪的样品室中,先测空白背景,再将样品置于光路中,测量样品红外光谱图。(4)扫谱结束后,取出样品架,取下薄片,将压片模具、试样架 等擦洗干净,置于干燥器中保存好。2.液体试样苯甲醛,环己酮的红外光谱的测定(1)将可拆式液体样品池的盐片从干燥器中取出, 在红外灯下用

少许滑石粉混入几滴无水乙醇磨光其表面。再用几滴无水乙醇清洗盐 片后,置于红外灯下烘干备用。(2)将盐片放在可拆液池的孔中央, 将另一盐片平压在上面,拧紧螺丝,组装好液池,置于光度计样品托 架上,进行背景扫谱。然后,拆开液池,在盐片上滴一滴液体试样, 将另一盐片平压在上面(不能有气泡)组装好液池。同前进行样品扫 描,获得样品的红外光谱图。(3)扫谱结束后,将液体吸收池拆开,及时用无水乙醇洗去样品, 并将盐片保存在干燥器中。【注意事项】1.KBr应干燥无水,固体试样研磨和放置均应在红外灯下,防 止吸水变潮;KBr和样品的质量比约在100〜200:1之间。2.可拆式液体池的盐片应保持干燥透明,切不可用手触摸盐片 表面;每次测定前后均应在红外灯下反复用无水乙醇及滑石粉抛光, 用镜头纸擦拭干净,在红外灯下烘干后,置于干燥器中备用。盐片不 能用水冲洗。【数据处理】苯甲酸的红外光谱图及解析酸的0—H伸缩振动峰在3400 —2400cm-1之间,而C=O伸缩

振动峰一般在1760cm-1或1710cm-1 (H键)处,这两个特征在基团频率区不甚明显;(2)在指纹区,700cm-1左右的705cm-1和662cm-1为单取代苯C—H变形振动的特征吸收峰;(1)在基团频率区,芳烃的C — H的 伸缩振动峰在3020 —3000cm-1之间,C=C骨架伸缩振动峰~1600cm-1 和 ~1500cm-1 ;苯甲醛的红外光谱图及解析在~2 820 cm-1和~2 720 cm-1处出现两个强度大致相等的吸收峰,说明是醛类化合物。~1 600 cm-1,~1 500 cm-1,~1 580 cm-1 的三个吸收峰表明有 苯环存在环己酮的红外光谱图及解析~1 600 cm-1 , ~1 500 cm-1 , ~1 580 cm-1 的三个吸收峰表明有苯环存在1720-1704CR11有一较大吸收峰,说明有羰基存在。【参考文献】1•刘建宁,张兵,尚虹【期刊论文】---分析化学2003( 05)。2•王少玲,卢文思,刘宏文【期刊论文】 ---光谱学与光谱分析 2003(01)。3•江崇球,唐波,傅红燕【期刊论文】---高等学校化学学报1996( 01)。

5.9

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

醛和酮的红外光谱

醛和酮的红外光谱

【摘要】

红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系, 来对物质进行分析的, 红外光谱可以用吸收峰谱带的位置和峰的强度 加以表征。 测定未知物结构是红外光谱定性分析的一个重要用途。 根 据实验所测绘的红外光谱图的吸收峰位置、 强度和形状, 利用基团振 动频率与分子结构的关系, 来确定吸收带的归属, 确认分子中所含的 基团或键,并推断分子的结构。

第 1 页

【关键字 】

红外光谱法 吸收峰 共轭效应 诱导效应 氢键效应 傅里叶 红外光谱仪 【实验目的】

1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外 光谱鉴别官能团,并根据官能团确定未知组分的主要结构;

2.选择羧酸,醛和酮中的羰基吸收频率进行比较, 说明诱导效应, 共轭效应及氢键效应对羰基峰的影响,指出各个醛酮的主要谱带;

3.了解仪器的基本结构及工作原理;

第 2 页

4.了解红外光谱测定的样品制备方法;

5.学会傅立叶变换红外光谱仪的使用。

【实验原理 】

羰基在 1850~1600 范围内出现强吸收峰,其位置相对较固定且强 度大,很容易识别。而羰基的伸缩振动收到样品的状态,相邻取代基

团,共轭效应,氢键,环张力等因素的影响,其吸收带实际位置有所 差别。

傅里叶红外光谱仪的介绍

产品简介傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

为什么说傅里叶光谱在红外区有统治地位?

红外光谱技术的最新进展是傅里叶变换红外光谱(FTIR)技术。

FTIR在信噪比、分辨率、速度和探测极限上具有很多优势。在红外研究领域,FTIR方法几乎完全取代了光栅分光法。

傅里叶变换光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的分辨率和信噪比;同时它的数字化的光谱数据,也便于计算机处理。正是这些基本优点,使傅里叶变换红外光谱方法发展成为目前中、远红外波段中最有力的光谱工具。

FTIR的优点

1. 多通道(Fellgett优点)

在色散型仪器中,由于检测器只能响应入射光强度的变化,不能响应入射光频率。因此,在测量时,需把入射的复色光用单色器色散为不同频率的分辨单元。为了检测这些相对纯化的光,就需要用光阑窄缝滤掉绝大部分色散后的单色光,仅让某一频率单色光通过。为了能测定全光谱,只好顺序多次测定色散后不同频率的单色光。

对于FTIR光谱仪,入射光被干涉仪调制成声频波,不同频率的光被调制成不同的值,所用探测器既获得强度信息,又获得频率信息。各种频率光同时落到探测器上,无需分光测量。这样色散仪器每次仅测量全光谱很小的一部分,而FTIR却测了全部光谱。如在 波段范围内,用 分辨率进行测量,则测量所需分辨单元数 。用色散光谱仪在T时间内对 波段测量时,每个分辨单元所需的测定时间为 。与此相应,FTIR则为T。由于随机噪声引起的信噪比 与测量时间成正比,所以FTIR比色散型光谱仪信噪比高的多,并且分辨率越高, 提高越大。在0.1cm-1分辨率时, 提高近190倍。显然多通道的优点使FTIR的信噪比增加,伴随而来的是检测灵敏度大幅提高。

2. 高光通量(Jacquinot优点)

在色散型仪器中,光路里设有狭缝式光阑,绝大部分光被它挡住,仅使极少部分光通过,并且分辨率越高,狭缝调得越窄,实际通过得光越少。加之光路中得许多光学元件也会损失光能,因而使色散型仪器光通量很小。FTIR光谱仪中除了有光能损失很少外,经常不设限光狭缝或其他限光元件。光可全部通过光孔,光通量很大。

光学系统的光通量Ω指通过它传送的光的总能量。光通量定义为光束的面积和立体角的乘积,即光阑面积和向准直镜孔径所张立体角的乘积,或者等效为准直光的面积和它的发散的立体角的乘积

在一些低分辨率的光谱仪中没有准直光阑,光源或探测器起着有效光阑的作用,限制了光通量的大小。

为了获得理想准直的光束(光束完美的平行),光阑必须无穷小,于是光通过量为零。光阑越大,光通量越大,而被准直的光束也越发散。然而,干涉仪中光束的发散度,或者它的光通量,是受到所要求的光谱分辨率限制的。因为对于一个给定的动镜位移,以不同的角度通过干涉仪的光线到达真正光轴有不同的光程差,它们对总干涉图信号的各自贡献将会模糊掉每个动镜位移的光程差。因此,分辨率要求越高,光发散要求越小。最佳的通过量与所研究的最高频率处的光谱分辨率是完全一致的。最大光通量定量地与光谱分辨率成比例

3. 高测量精度(Connes优点)

色散型仪器的精度受很多条件的限制。如校正谱图精度的校样纯度、机械部件移动以及人为的读书误差等,都使这类仪器测量精度难于提高。一般很难达到0.1cm-1精度。

FTIR光谱仪的光学结构简单,干涉仪只有一个动镜是运动部件,通常动镜是在无摩擦的空气轴承上移动,其运动又受高度稳定的He-Ne激光干涉系统监控,因此测量的重复性和准确度都很十分高。加之在FTIR系统中,使用了单色性极好的He-Ne激光干涉系统作为采样标尺,确保采样精度达到 0 .001cm-1。

4. 测量波段宽,全波段内分辨率一致

色散型光谱仪测量时,用色散法配以光阑狭缝取得单色光。但这些不同频率的单色光能量又不尽相同。为了保持所获得的能量近似不变,常常需要不断改变狭缝宽度,或用其他技术来调节光通量。这在技术上是很困难的。一种简化的办法是在中红外测量全波段光谱时,使用两种分辨率。色散型光谱仪无法在全波段范围内分辨率一致。

FTIR光谱仪以干涉法采集数据,以数字形式存储数据和运算,很容易做到分辨率一致。极宽的测量波段也是FTIR光谱仪特有的优点。它可用改换光源、分束器、探测器的办法,在同一台FTIR光谱仪上实现多波段测量。

傅里叶红外光谱仪结构示意图及介绍

如图:

傅里叶红外光谱仪主要由光源(硅碳棒、高压汞灯)、迈克耳孙(M6E1驯)干涉仪、检测器、计算机和记录仅组成。核心部分为迈克耳孙干涉仪,它将光源来的信号以干涉图的形式送往计要机进行傅里叶变换的数学处理,最后将干涉图还原成光谱图。

关于傅立叶红外光谱基团峰和傅里叶红外光谱法原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624